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Post-translational modifications to proteins are essential mechanisms for controlling functions of proteins 

and subsequently for regulating cell fate. SUMO modification (SUMOylation) has emerged as a critical 

regulatory pathway in cellular function and biological processes. DeSUMOylation (removal of SUMO 

conjugation) by members of SUMO-specific proteases (SENPs) family makes SUMO modification highly 

dynamic. In this mini-review, we briefly introduce the current knowledge regarding the regulatory 

pathway of deSUMOylation and focus on the recent progress of functions of SENPs in biological 

progresses. 
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INTRODUCTION 

The molecular basis of biological activity has recently been 

challenged by the recognition of additional mechanisms. 

Post-translational modifications are essential and/or required 

mechanisms for controlling functions of proteins and 

subsequently for regulating cell fate and normal cell 

physiology. Post-translational modification of proteins 

involving conjugation members of the small ubiquitin-related 

modifier (SUMO) family, which was discovered in 1997 and 

is highly conserved from yeast to humans and in plants, has 

been shown to regulate and influence diverse cellular 

processes and signaling pathways, including cancer 

development, progression, and metastasis,1,2 cell cycle 

regulation and apoptosis,3-5 chromosome segregation,6,7 DNA 

repair,8,9 formation of sub-nuclear structures,10,11 nuclear-

cytosolic transport,12,13 protein stability and degradation,14-16 

and transcriptional regulation and nuclear body assembly.17-19 

In mammals, four SUMO isoforms (SUMO1, SUMO2, 

SUMO3, and SUMO4) are encoded by distinct genes. 

SUMO1 has approximately 50% identity to either the closely 

related SUMO2 or SUMO3.20,21 SUMO2 and SUMO3 share 

approximately 95% sequence homology. SUMO4, very 

similar to SUMO2/3, is associated with susceptibility to type 

1 diabetes mellitus.22 In contrast to SUMO1, SUMO2 and 

SUMO3 contain a conserved consensus SUMOylation site in 

their N-terminal regions, therefore efficiently form polymeric 

chains.23 Recent studies demonstrate that SUMO chains may 

function in facilitating the recruitment of ubiquitin ligases, 

which subsequently targets poly-ubiquitinated and/or poly- 

SUMOylated proteins for proteasomal degradation.24-26 
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Recent data suggest some selectivity in the SUMO1 and 

SUMO2/3 modification of proteins.20 Although the 

consequences of selective conjugation of different SUMO 

family isoforms remain largely undiscovered, the functional 

effects of protein modification by SUMO2 and/or SUMO3 

can be distinguished from that of SUMO1 in the control of 

transcriptional activity.27 

 

Despite limited sequence identity, SUMO proteins and 

ubiquitin have similar 3D structure, share common ancestry, 

and use an enzymologically parallel pathway of conjugation. 

Newly translated SUMO proteins are processed by 

sentrin/SUMO specific cysteine proteases (SENPs) to 

remove C-terminal residues in SUMO and to expose a 

conserved di-glycine motif, generating active SUMO 

proteins.28 The SENP isoforms exhibit different affinity for 

the SUMO proteins in this endopeptidase activity. After this 

initial cleavage step, SUMO is then activated by the 

formation of a thioester bond between the carboxy-glycine 

residue of SUMO and the cysteine residue of the 

heterodimeric E1-activating enzyme SAE1/SAE2 in an ATP-

dependent manner.29 This activated thioester-linked SUMO is 

then transferred from E1 enzyme to the SUMO-specific E2-

conjugating enzyme Ubc9, which in turn recognizes specific 

substrates and catalyzes the formation of an isopeptide bond 

between SUMO and the lysine residue of the target 

substrate.29,30 SUMO conjugation can be preformed directly 

by E2 enzyme alone or facilitated by SUMO E3 ligases, such 

as RanBP2 and members of the protein inhibitor of activated 

STAT (signal transducers and activators of transcription) 

(PIAS) family.31-33 Covalent modification of proteins by 

SUMO is reversible and all SENP proteins of family exhibit 

isopeptidase activity to cleave the isopeptide bond between 

the lysine residue of the target substrate and the glycine 

residue of SUMO (Figure 1). Although the majority target 

proteins for SUMO modification are nuclear proteins, several 
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lines of evidence from recent studies suggest that cytosolic as 

well as intergral membrane proteins (plasma and 

mitochondrial membranes) are SUMOylated 34-36 and that 

SUMOylation exerts important and expanded regulatory 

roles.  

 

In mammals, six SENP proteins (SENP1, SENP2, SENP3, 

SENP5, SENP6, and SENP7) have been identified and well 

characterized. SENP4 was later found to be identical to 

SENP3. Generally, N-terminus of SENP determines 

paralogue specificity, while C-terminus is a catalytic 

domain.37 Each SENP protein has different substrate 

specificities and cellular localizations. For example, SENP3, 

SENP5, SENP6, and SENP7 favor deconjugating SUMO2 

and SUMO3 than SUMO1; however, SENP1 and SENP2 can 

deSUMOylate target proteins modified by any of the 3 

SUMO proteins. For localization, SENP3 and SENP5 are 

mainly localized in the nucleolus, while SENP1, SENP6, and 

SENP7 are mainly distributed in the nucleoplasm. A recent 

study indicates that knockdown of SENP7 expression leads 

to the accumulation of SUMO2, SUMO3, and promyelocytic 

leukaemia (PML) proteins.37-40  Several lines of evidence 

demonstrate that knockout of either SENP1 or SENP2 with 

excessive SUMO modification results in embryonic 

lethality.41-43 Under normal physiological conditions, only a 

small amount of the total proteins is SUMOylated (<10%). 

Therefore, balancing SUMOylation and deSUMOylation (by 

SENP proteins) is essential for maintaining normal 

physiological conditions and are critical for normal cellular 

events. 

 

This mini-review focuses on the roles and functions of SENP 

proteins for recent progress of deSUMOylation in biological 

processes. The detailed functions of SENP-mediated 

deSUMOylation in cancer development and progression,44,45 

in yeasts,46 and in plants47 have been reviewed elsewhere. 

 

 

 
 

Figure 1. SUMOylation-deSUMOylation cycle. Newly translated SUMO proteins are processed by SENPs to 

remove C-terminal residues in SUMO and to expose a conserved di-glycine motif, generating active SUMO 

proteins. After this maturation process, SUMO is then activated by the formation of a thioester bond between the 

carboxy-glycine residue of SUMO and the cysteine residue of the heterodimeric E1-activating enzyme 

SAE1/SAE2 in an ATP-dependent manner. This activated thioester-linked SUMO is then transferred from E1 

enzyme to the SUMO-specific E2-conjugating enzyme Ubc9. SUMOylation can be done directly by E2 enzyme 

alone or facilitated by SUMO E3 ligases. DeSUMOylation is processed by SENPs and free SUMO may be 

recycled for another SUMOylation cycle.  

 

 

DESUMOYLATION IN RECENT BIOLOGICAL 

PROCESSES 

Apoptosis, Cell Cycle, and Cell Survival 

Apoptosis 

Cell signaling pathways determine and control cell cycle 

progression, cell growth, cell differentiation, cell survival, 

and tumorigenesis. Apoptosis is an important physiological 

form involved in many biological processes, including 

organogenesis, aging, and diseases. SUMO conjugation and 

deconjugation also regulate the molecular mechanisms of 

apoptosis.  For example, HIPK1, a serine/threonine-protein 

kinase, is involved in transcription regulation and TNF-

mediated cellular apoptosis. HIPK1 can be SUMOylated in 

the nucleus. In resting cells, SENP1, localized in the 

cytoplasm, is complexed with antioxidant protein 

thioredoxin. TNF induction releases the association between 
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SENP1 and thioredoxin, resulting in SENP1 nuclear 

translocation, which deSUMOylates HIPK1 and leads to an 

enhanced apoptosis.48  

 

DNA repair 

Cells require  DNA  repair  system  to correct damages to the 

DNA molecules in order to survive. Regulation of DNA 

repair also requires balanced SUMOylation and 

deSUMOylation processes. In normal physiological 

condition, SENP6 binds to RPA70, a component of 

replication protein A complex, and keeps RPA70 in a 

hypoSUMOylated state during the S phase. Upon induction 

of replication stress, SENP6 no longer binds to RPA70, 

resulting in hyperSUMOylated RPA70, which recruits 

specific mediators to the DNA damage foci to facilitate DNA 

repair.49  

 

Cell division 

Kinetochore assembly is essential for cell division during 

mitosis and meiosis. Normally, RNF4, an ubiquitin ligase, 

targets poly-SUMOylated proteins for proteasomal 

degradation, including CENP1 complex, which is required 

for kinetochore composition. A recent study has been shown 

that SENP6 plays an important role in spindle assembly and 

metaphase chromosome congression. First, cells lacking 

SENP6 proteins show defects in cell division. Secondly, 

overexpression of SENP6 stabilizes CENP1 complex by 

reducing proteasomal degradation.50 SENP2 also 

deconjugates SUMOylated Aurora-B, resulting in decreased 

phosphorylation of Aurora-B and impaired cell division.51 

Therefore, fine balanced SUMOylation and deSUMOylation 

processes control cell division. 

 

Proliferation, senescence and genome integrity 

Both proliferation and senescence are regulated by SUMO 

conjugation and deconjugation. For example, SENP1 

repression by RNA interference results in global increase in 

SUMOylated proteins and in the number of nuclear PML 

bodies as well as p53-mediated transcription activity, leading 

to premature senescence.52 Therefore, deSUMOylation by 

SENP1 is important for proliferation of normal human cells. 

Since its discovery in 1979, p53 is the most crucial factor in 

cell cycle regulation and genome maintenance. Recent 

studies suggest that genome integrity and cell cycle 

regulation by p53 also require balanced SUMOylation and 

deSUMOylation. For example, it has been known that 

SENP2 interacts with SUMOylated Mdm2 and regulates its 

SUMO conjugation at the PML body in the nucleus. 

DeSUMOylation of Mdm2 by SENP2 permits Mdm2-p53 

binding in the cytoplasm and then ubiquitination of p53, 

leading to p53 proteasomal degradation. Therefore, SENP2 

regulates p53 activity through modulation of Mdm2.53 

Moreover, a recent study has demonstrated that SENP3 

attenuates Mdm2-mediated p53 ubiquitination and 

degradation.54 Overall, deSUMOylation by SENP proteins 

plays an essential role in cell cycle regulation and cell 

survival. 

 

Transcriptional Regulation and Nuclear Body Assembly 

The majority of SUMO substrates identified so far are  

localized in the nucleus and SUMOylation mainly regulates 

transcriptional activities of target proteins as well as nuclear 

body assembly. For example, SENP proteins regulate 

transcriptional activities of RCOR1 (CoREST),55 Elk1,56 

BZLF1,57 and PML.58 PML, a transcription factor and tumor 

suppressor, can be SUMOylated and is required for 

formation and regulation of PML nuclear body. It has been 

shown that SENP1 activation by IL6 removes SUMO from 

PML, leading to modulation of STAT3 activation.58 A recent 

study also shows that SUMO-conjugated PML is a substrate 

of SENP6. Depletion of SENP6 results in hyper-

SUMOylated PML proteins and increased size of PML 

nuclear body.59 These results suggest that SENP proteins 

regulate PML activity and nuclear body formation.  

 

Cancer Development and Progression 

SUMOylation also involves in cancer development and 

progression. Recent progress of SENP-mediated 

deSUMOylation in prostate and colon cancers has been 

reported and thus we briefly summarize here. Androgen 

receptor (AR) is the main target for prostate cancer treatment 

and therapy. AR has been shown to be SUMOylated at lysine 

residues 386 and 520. Studies have shown that SENP1 and 

SENP2 are efficient in cleaving SUMOylated AR. 

DeSUMOylation by SENP1 and SENP2 also enhances AR-

mediated transcriptional activity in promoter assays. 

Moreover, in prostate cancer cells, overexpression of 

SENP1, but not SENP2, increases the transcriptional activity 

of endogenous AR. Knockdown SENP1 expression in 

LNCaP prostate cancer cells attenuates cell growth.60 

Therefore, SENP1 is essential for prostate cancer 

proliferation and growth. The mechanisms that SENP1 

induces prostate cancer cell growth could be due to HIF1α 

activation and stabilization, leading to increased VEGF and 

cyclin D1 levels and in turn increased angiogenesis, 

eventually resulting in cell growth.61 Recent studies have 

shown that SENP1 is over-expressed in most of colon cancer 

tissues. SENP1 deletion inhibits cell growth by up-regulating 

CDK inhibitors, such as p16 and p21.62 Overall, SENP 

proteins might play a significant role in cancer growth and 

be a suitable target for cancer treatment and therapy. 

 

Adipogenesis and Development 

DeSUMOylation also plays a critical role in the control of 

normal development, erythropoiesis, adipogenesis and 

adipocyte differentiation. For example, Deletion of Xenopus 

SENP3 causes accumulation of hyper-SUMOylated species, 

resulting in developmental defects in embryos.63 Studies 

have shown that induction of adipocyte differentiation 

triggers SENP2 expression. Knockdown of SENP2 reduces 

adipogenesis by inhibiting PPARγ and C/EBP signaling 

pathways. Furthermore, in mouse model, adipogenesis of 

preadipocytes requires the presence of SENP2.64 Another 

example is that global deletion of SENP1 causes anemia and 

embryonic lethality due to erythropoiesis defects. Further 

analysis shows that the defects are mainly due to down-

regulated GATA1 and GATA1-dependent genes in fetal 

liver.65 Therefore, SENP1 is required for promoting GATA1 

activation by deSUMOylating GATA1 and subsequent 

erythropoiesis. A recent study has demonstrated that SUMO 
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proteins are involved in the stress response during 

spermatogenesis;66 however, it is unclear whether SENP 

proteins are directly involved during normal 

spermatogenesis.  

 

Endocrine and Reproductive System 

SUMO modification has been shown to play an essential role 

in germ cell development in the testis and male reproduction. 

Retinoic acid and its receptor are involved in SUMOylation-

mediated processes. All-trans retinoic acid (ATRA) induces 

SUMO2 modification of retinoic acid receptor α (RARA) at 

lysine residues 166 and 171. However, without ligand 

stimulation, only lysine 399 is SUMOylated by SUMO2. A 

further study has shown that lysine 399 is critical for RARA 

nuclear trafficking. However, SUMOylation of lysines 166 

and 171 inhibits RAPA nuclear localization. Interestingly, 

SENP6 is able to bind to wild-type RARA but not K399R 

mutant.67 Moreover, retinoic acid also modulates the 

subcellular localization of SUMO2 and SUMO3.68 

Therefore, both SUMOylation and deSUMOylation are 

critical for RARA activity in Sertolic and germ cells in the 

testis. Ectopic ACTH syndrome is mainly characterized by 

tumoral cortisol resistance. Recent studies have 

demonstrated that SMRT, a major nuclear corepressor 

expressed in ACTH-secreting thymic carcinoids, participates 

in the negative feedback loop of dexamethasone-mediated 

suppression of proopiomelanocortin. In dexamethasone-

resistant cells, SMRT is heavily SUMOylated. Interestingly, 

overexpression of SENP proteins increases suppression of 

proopiomelanocortin by dexamethasone partly due to 

reduced interaction of SMRT and HDAC3. These results 

suggest that targeting SUMOylation pathway might be a 

suitable therapeutic approach for ectopic ACTH syndrome 

patients.69 The pathways critical for syncytiotrophoblast 

formation and synthesis by trophoblast fusion are essential 

for pregnancy maintenance. GCM1 is a transcription factor 

that is necessary for trophoblast fusion and placental 

development. SUMO modification of GCM1 on lysine 156 

reduces its activity. Upon cAMP stimulation, GCM1 is 

phosphorylated and subsequently recruits SENP1, leading to 

deSUMOylation of GCM1, resulting in transcriptional 

activation of GCM1. These results indicate that the interplay 

between phosphorylation and SUMOylation/deSUMOylation 

is critical for placental cell fusion.70 SUMOylation also plays 

a role in the regulation of insulin secretion. A recent study 

has shown that SUMO1 impairs glucose-induced insulin 

secretion by blocking β-cell exocytosis to Ca2+ signaling. 

Interestingly, overexpression of SENP1 rescues exocytosis 

and deletion of SENP1 further impairs exocytosis.71 Overall, 

deSUMOylation by SENP1 is critical for glucose-dependent 

insulin secretion. 

 

Ribosomal Maturation 

SUMOylation-deSUMOylation cycle also participates in 

rRNA processing and ribosome maturation. NPM1 is 

involved in diverse processes such as ribosome biogenesis 

and centrosome duplication. NPM1 can be SUMOylated by 

SUMO2 resulting in interference with 28S rRNA maturation. 

This interference can be rescued and relieved by SENP3, 

suggesting that deSUMOylation of SUMO2 from NPM1 by 

SENP3 is critical for rRNA maturation.72 SENP3 is also 

required for maturation of 60S ribosomal subunit. 

Knockdown SENP3 prevents PELP1-TEX10-WDR18 

complex recruiting to 60S particles thereby reducing 

ribosome maturation.73 LAS1L is another nucleolar protein 

required for maturation of 60S subunit. A recent study has 

shown that LAS1L interacts with PELP1-TEX10-WDR18 

complex along with SENP3 to form a nucleolar complex that 

co-fractionates with 60S subunit. SENP3 is also required for 

nucleolar localization of this complex.74 These results 

indicate that SENP3 is important for ribosome biogenesis. 

 

Cardiovascular System 

Recent studies also suggest the link between 

SUMOylation/deSUMOylation and cardiovascular function. 

TRPM4, a calcium-activated non-selective cation channel 

that mediates membrane depolarization, is involved in 

progressive familial heart block. A recent study shows that 

Glu7Lys (E7K) mutation of TRPM4 reduces its 

deSUMOylation, resulting in impaired endocytosis due to 

hyper-SUMOylation of the channel. 75 PPARγ also plays a 

role in atherosclerosis. A recent study shows that 

deSUMOylation of PPARγ at lysine 107 significantly 

inhibits proliferation and migration of vascular smooth 

muscle cells and also reduces neointimal formation after 

balloon injury.76 These results suggest that deSUMOylation 

is critical against atherosclerosis. More studies are needed to 

further investigate which SENP proteins are directly 

involved in these processes. A global knockout of SUMO1 

in mice results in congenital heart diseases. A recent report 

demonstrates that enhanced deSUMOylation by SENP2 

overexpression in the hearts of mice promotes congenital 

heart defects and cardiac dysfunction,77 suggesting that a 

balanced SUMOylation-deSUMOylation pathway is critical 

for proper cardiac function. 

 

Nervous System 

SUMOylation targets are also present in nervous system. 

Recent studies have shown that kainate receptor subunit 

GRIK2, an ionotropic glutamate receptor that functions as an 

excitatory neurotransmitter at many synapses in the central 

nervous system, is a SUMO substrate. SUMOylation of 

GRIK2 regulates endocytosis of kainate receptor and 

subsequent synaptic transmission. However, 

deSUMOylation by SENP1 prevents endocytosis of kainate 

receptor.78 Interestingly, kainite receptor-mediated excitatory 

post-synaptic currents are reduced by SUMOylation and 

increased by SENP1, suggesting SUMOylation-

deSUMOylation pathway regulates synaptic transmission 

and function. The central nervous system uses oxygen and 

glucose as main energy sources. It has been shown that 

glucose and oxygen deprivation induces SUMO conjugation 

to substrates in the central nervous system. However, 

glucose and oxygen deprivation also trigger SENP1 

synthesis. Further studies have shown that SENP1 increases 

glucose and oxygen deprivation-induced cell death,79 

suggesting that SUMOylation plays a protective role in 

neurons after oxygen and glucose deprivation. However, 

more studies are indeed needed to dissect the roles of SENP 

proteins in cell injury from oxygen and glucose deprivation. 
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Immune System and Stress Response 

Toll-like receptors (TLRs) are important initiators and 

sensors for inflammatory response and tissue damage. It has 

been shown that SUMOylation of liver X receptors 

suppresses TLRs-induced transcriptional activity by 

preventing clearance of NCoR complex. CORO2A, a 

component of NCoR complex, has been shown to interact 

with SUMOylated liver X receptors, resulting in preventing 

actin recruitment. A further study has shown that 

deSUMOylation of liver X receptors by SENP3 releases 

CORO2A, leading to NCoR departure, resulting in enhanced 

TLRs-induced transcriptional activity.80 These results 

suggest that deSUMOylation plays an important role in 

controlling homeostasis and immunity. SUMOylation-

deSUMOylation cycle also participates in regulating innate 

immunity and viral infection. IRF3 mediates interferon-

stimulated promoter activation and functions as a molecular 

switcher for antiviral innate immunity. A recent report shows 

that SENP2 removes SUMO conjugation from IRF3 and 

promotes IRF3 for ubiquitination and subsequent 

proteasomal degradation. Moreover, in SENP2-deficient 

cells, INFβ is activated and viral replication is reduced,81 

suggesting that SUMOylation/deSUMOylation and 

ubiquitination play a critical role in regulating innate 

immunity. DeSUMOylation also plays a role in response to 

genotoxic stress and cell injury. NEMO, NF-κB essential 

modulator, is critical for NF-κB activation and pivotal for 

immunity and oncogenesis. A recent report suggests that 

SENP2 associates with NEMO, deSUMOylates NEMO, and 

subsequently inhibits NF-κB activation, resulting in lower 

resistance to cell death induced by DNA damage.82 In H2O2-

induced oxidative stress, SENP1 has been shown to impair 

SUMO1-mediated phosphorylation of JNK and reduce cell 

death.83 These results demonstrate that deSUMOylation 

might play a protective role in oxidative stress-induced cell 

injury. Moreover, SUMOylation also plays a role in the 

development of the immune system, such as lymphoid 

development. A recent report has shown that SENP1 is 

critical for the development of early T and B cells and 

regulates the functions of STAT5, a key regulator of 

lymphoid development.84 Deletion of SENP1 results in 

accumulated SUMOylated STAT5, which blocks its 

acetylation and impairs downstream signaling pathways.84 

Therefore, SENP1 is essential for early lymphoid 

development during embryonic development. 

 

Methodology and Inhibitor Design 

Since deSUMOylation by SENP proteins plays critical roles 

in many diverse biological processes, developing modern 

techniques to detect the activity of SENP proteins and also 

designing novel inhibitors for SENPs are indeed necessary. 

For example, ginkgolic acid has been shown to block 

SUMOylation by interfering E1-SUMO formation.85 A 

sensitive enzyme-based SUMO-CHOP reporter assay could 

be used to determine Km of SENPs and to characterize 

inhibitors of SENPs.86 Forster resonance energy transfer 

(FRET)-based and time resolved (TR)-FRET-based assays 

could be used to analyze SENP activities.87-89 All SENP 

proteins share a similar C-terminal domain with the catalytic 

triad (active site) (His-Asp-Cys) and 3D structure in the 

catalytic domain.90-95 Mutagenesis studies reveal that 

disruption of catalytic triad abolishes maturation processing 

and deSUMOylation activities of SENP proteins.94,96 In 

SENP6 and SENP7, the most divergent family members of 

SENP proteins, there is an additional loop insertion (with 

sequence P-P-P-P-T/A-K) that separates the conserved 

catalytic domain.38,40 It has been shown that this additional 

loop may play an important role for SUMO2/3 isoform 

specificity of SENP6/7.40 Searching for novel inhibitors for 

SENP proteins is also making progress recently. For 

example, inhibitors and active site probes containing aza-

epoxide and acyloxymethyl ketone (AOMK) groups have 

been tested and shown effectively inhibiting human SENP 

isoforms.97 Another example is the group of benzodiazepine-

based SENP1 inhibitors.98 One group of benzodiazepine 

scaffold inhibitors exhibits strong inhibitory activity with 

IC50 around 9.2 nM. Therefore, for future therapeutic target 

purpose, further studies are indeed necessary to explore 

searching for more potent SENP inhibitors by synthesis and 

designing methods. 

 

CONCLUSIONS AND PERSPECTIVES 

The function and activity of SENP proteins make 

SUMOylation process a highly dynamic post-translational 

protein modification. From the recent studies, we can assure 

that SUMOylation and deSUMOylation cycle regulates 

many diverse biological processes including transcription, 

cell cycle regulation, apoptosis, cell survival, organogenesis, 

development, immune and stress responses, ribosomal 

maturation, cancer initiation and progression. Keep in mind 

that deSUMOylation by SENPs may also play a critical role 

in regulating interplay and crosstalk among post-translational 

modifications, such as SUMOylation, phosphorylation, 

acetylation, methylation, and neddylation. Indeed, we need 

more studies to complete the signaling networks regulated by 

SUMOylatgion-deSUMOylation cycle to get insight into 

future drug design to overcome a variety of diseases. 
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