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The incidence of autism spectrum disorder (ASD) has increased significantly in the past decades, now 

affecting 1 out of 68 children in USA. The complexity of this disorder and the unclear mechanisms have 

hindered the development of an effective therapeutic regimen. Recent studies have suggested that neuro-

inflammation plays an important role in the pathogenesis of ASD. A literature review was conducted to 

examine the evidence of various central immune processes involved in ASD. Conventional and novel 

medications for ASD treatment were summarized. 
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INTRODUCTION 

Autism spectrum disorder (ASD) is a complex 

neurodevelopmental disorder characterized by deficits in 

social interaction, social communication, restricted and 

repetitive interests, and behavioral patterns.
1
 Symptoms of 

affected children usually manifest by the age of 3. The 

occurrence of ASD has increased dramatically in the past 

decade to 1 in 68 in 2010 in the USA according to the recent 

report from the Centers for Disease Control and Prevention 

(CDC).
2
 The pathogenesis for ASD is unclear, and there is no 

effective treatment. Several epigenetic triggers have been 

identified, including trauma, adverse reactions to vaccination, 

infection, and allergies. Neuro-inflammation characterized by 

microglia/astrocyte activation and brain inflammatory 

cytokine production have been documented in several post-

mortem studies as well as in biomarker studies. 

Overactivation of microglia and astrocytes has been found in 

several brain regions during autopsies of autistic brains.
3-5

 

Several studies have shown elevated inflammatory cytokines 

(such as interleukin ( IL)-1, IL-6, IL8, IL12, tumor necrosis 

factor (TNF)-α) in serum, plasma, and cerebral spinal 

fluid(CSF) in children with autism.
4,6,7

 It has been suggested 

that abnormal activation of neuro-inflammation in ASD 

begins in the perinatal period. Pre-natal or early post-natal 

inflammation and infection have been shown to lead to 

neurodevelopmental dysfunction in ASD. A Danish study 

investigated about 689,196 births over a decade. The result 

shows that mothers with rheumatoid arthritis increased the 

risk of children of developing autism by 80 percent.
8
 An 

animal study showed that immune activated pregnant mice 

via injecting the viral mimic poly (I:C)  produced newborn 

mice with autistic-like behavior through the collateral 

damage.
9,10

 Therefore, growing evidence implies that 

prolonged abnormal activation in brain inflammation 

contributes to the pathogenesis of autism. These new findings 

are leading to the development of novel therapeutic therapies. 

 

MAST CELLS ACTIVATION AND AUTISM 

Mast cells are the key players in the inflammatory response 

and present in all tissues. In the brain, they are mostly found 

in the diencephalon
11

 and generate pro- and anti-

inflammatory cytokines upon activation. Mast cell activation 

can be triggered by both allergic and non-allergic reactions. 

Mast cells also induce neutrophil infiltration and modulate 

microglial activation, mediating the neuro-inflammatory 

process.
12

 The fact that ASD children have common immune 

disorders implicates overactivation of mast cells in ASD
13

 

ASD children have more allergic-like reactions. Several 

inflammatory diseases increase the chance of developing 

autism, for instance, it was reported that celiac disease 

increases the risk of ASD by 350%.
8
   

 

Evidence suggests that mast cell activation contributes to a 

malfunction of blood brain barrier (BBB) 
14,15

 in ASD, as 

evidenced by serum antibodies that attack fetal brain 

tissues.
16-19

 Several vasoactive peptides that activate mast 

cells have been identified. Neurotensin (NT) stimulates mast 

cells in various tissues, including skin, peritoneum, and brain, 

resulting in increased vascular permeability.
20

 NT is isolated 

in brain and gut tissues. In the brain, mast cell activation by 

NT leads to secretion of vascular endothelial growth factor 

(VEGF),
21

 which contributes to BBB damage. Corticotropin-

releasing hormone (CRH) was found to act synergistically 

with NT to stimulate mast cells.
22

 A recent study reports that 

NT is increased in the serum of children with autism, 

implicating the role of NT in autism pathogenesis.
23

 In 

addition, cytokine IL-33 has also been implicated to stimulate 

mast cells.
24
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MICROGLIAL ACTIVATION IN AUTISM 

Microglia are resident macrophages of the brain and play a 

critical role in the immune system of the brain. In addition, 

microglia regulate synaptogenesis
25

 and neurogenesis.
26

 

Microglia are activated during brain insults, including 

ischemia, trauma, and infection. Activated microglia secrete 

pro-inflammatory cytokines, including IL-1β, TNF-α , IL-6, 

and the inducible form of nitric oxide synthase (iNOS).
27

 

Activation of microglia cells is required for normal brain 

defense mechanisms. However, overactivation of microglia 

leads to chronic neuroinflammation, which is 

neurodestructive. 

 

In autism, increasing evidence suggests chronic activation of 

microglia. Post-mortem brain examination has revealed 

abnormally activated microglia and astrocytes in multiple 

brain regions.
4,5,28

 Morgan et al
5
 found microglial activation 

and increased microglial density in the dorsolateral prefrontal 

cortex of brains with autism (n=13) as compared to controls 

(n=9). It is of interest that microglial activation presents in 

early age. Two of three autism cases under the age of 6 had 

markedly microglial activation, suggesting microglial 

activation may play an important role in the pathogenesis of 

autism.
5
 In another post-mortem study, Vargas and 

colleagues reported that microglial activation was widespread 

in the cortical and subcortical regions, including the 

cerebellum, midfrontal and cingulate gyrus.
4
 Tetreaulte et al 

(2012) reported microglial activation in the fronto-insular and 

visual cortices in subjects with autism as compared to 

matched controls. Because the two regions are anatomically 

distinct, it is speculated that the density of microglia in brains 

with autisms might be higher throughout the cerebral 

cortex.
28

 Furthermore, a recent case-controlled study using 

positron emission tomography (PET) revealed overactivation 

of microglia in multiple brain regions.
29

 In this PET study, 20 

men with ASD (age range 18-31) and 20 age-matched 

healthy men underwent 3-dimensional magnetic resonance 

images (MRIs) prior to PET measurement. The activated 

microglial density in the brain was measured using 

radiotracer for microglia - [11C](R)-PK11195. The 

radiotracer binding potential was significantly increased in 

multiple brain regions (such as the cerebellum, midbrain, 

pons, and fusiform gyri) in subjects with ASD compared with 

controls. Among the above brain regions, the cerebellum 

showed the most prominent hyperactivation in those with 

ASD.
29

 The cytokine profile from brain tissue and CSF also 

suggests neuroglial activation in subjects with autism. Vargas 

et al examined cytokine levels in fresh-frozen tissues from 

seven autistic patients and CSF from six living autistic 

patients. In the brain tissues, macrophage chemoattractant 

protein (MCP)-1 was increased in the anterior cingulated 

gyrus. Tumor growth factor (TGF)-beta 1, which is derived 

from microglia and astroglia, was significantly increased in 

the middle frontal gyrus in autistic patients. Protein array 

analysis of the CSF showed significant elevation of MCP-1 

in autistic subjects.
4
 Several other studies also report 

elevation of proinflammatory cytokines in the CSF or brain 

tissue of autistic subjects. Chez et at showed that TNF-α was 

increased in the CSF of autistic patients.
7
 A study conducted 

by Li et al showed that TNF-α, IL-6, granulocyte-

macrophage colony-stimulating factor (GM-CSF), IL-8, and 

IFN-γ were significantly elevated in the brain tissue of 

autistic patients as compared to controls.
30

 

 

It has been suggested that overactivation of microglia in 

those with ASD most likely begins during the perinatal 

period and lasts until adulthood. For example, terbutaline, 

which is used to arrest preterm labor, has been associated 

with an increased risk for autism
31

 and cognitive deficit.
32

 

Animals treated with terbutaline on post-natal days 2 and 5 

showed marked microglial activation associated with autistic-

like behavior. On the other hand, animals treated with 

terbutaline on post-natal days 11 to 14 did not have any of 

the effects.
33

  

 

ASTROCYTE ACTIVATION AND AUTISM 

Astrocytes are the most abundant cell type in the human 

brain. They play important roles in diverse physiological 

functions, including repairing brain tissue after injury, 

supporting endothelial cells lining the BBB, maintaining 

extracellular ion balance, and transmitting nutrients to 

neurons.
34

 Astrocytes also play critical roles in 

synaptogenesis during development. However, extended 

activation of astrocytes contributes to gliosis and brain 

damage. Several studies have found increased levels of 

astrocyte markers (glial fibrillary acidic protein, GFAP) in 

the CSF in children with autism, suggesting reactive 

astrogliosis in the central nervous system (CNS).
35,36

 

Consistently, GFAP was also elevated in multiple post-

mortem brain regions in children with autism as compared to 

matched controls. Laurence and Fatemi reported that GFAP 

was elevated in frontal, parietal, and cerebellar cortices in 

autistic specimens as compared to controls.
37

  In addition, 

other astrocyte markers (aquaporin 4 and connexin 43) are 

also increased in autistic brains as compared to healthy 

controls.
38

 

 

NEUROINFLAMMATION AND UNDER-CONNECTI-

VITY 

Many studies have suggested significant disruption of 

connectivity in autistic brains. One study found that the 

severity of connectivity abnormality correlates with the 

severity of the ASD symptoms.
39,40

 Functional magnetic 

resonance imaging (fMRI) revealed lower connectivity 

between the frontal and parietal-occipital regions.
41

 Other 

studies using fMRI showed reduced functional connectivity 

between anterior and posterior insula, striatal subregions, and 

limbic cortex in ASD as compared to controls.
42

 In a study 

using whole-brain MRI morphometric surveys of asymmetry 

in children with high-functioning autism and with 

developmental language disorder (DLD), Herbert et al 

reported that ASD and DLD showed more asymmetry at the 

level of cortical parcellation units, especially in the higher-

order association areas.
43

 In addition, in a different study, 

Hertbert et al also reported that ASD and DLD had increased 

total brain and white matter volumes without an increase in 

the size of the corpus callosum.
44

 Consistently, Boer-

Mediddo et al found that ASD callosums were small when 

adjusted for increased ASD cerebral volume. More severely 

affected ASD subjects have greater proportional callosum 
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reduction than developmental disorder.
39

 Taken together, 

those data suggest that ASD and DLD have connectivity 

abnormalities in higher-order association areas. 

 

Decreased functional connectivity between cortical regions 

has been demonstrated in wide variety of 

neurodevelopmental disorders, including autism,
45,46

 

schizophrenia,
47

 epilepsy,
48

 obsessive compulsive disorder.
49

  

Accumulating evidence suggests that deficit in synaptic 

maturation may contribute to the pathophysiology of mental 

illness.
50

 Microglia have been shown to play an important 

role in the elimination of synapses during brain development, 

so-called “pruning”.
51

 It was shown that microglia actively 

engulf synaptic material.
51

 Mice with reduction of microglia, 

due to lack of chemokine Cx3cr1 during the early postnatal 

period developed excess of dendritic spines, immature 

synpases and immature brain circuitry.
25

 Furthermore, the 

mice with deficiency in synaptic pruning have weak synaptic 

transmission, decreased brain connectivity and deficits in 

social interaction and other autistic behaviors.
52

  

 

Furthermore, chronic neuroinflammation can contribute to 

progressive neurodestruction, leading to worsening of ASD.
53

 

Cytokines released by activated microglia and astrocytes are 

accumulated during the prolonged neuroglial activation.
54

 A 

abnormally high level of cytokines has been shown to result 

in neuronal death, which leads to loss of connectivity.
55

  

 

DRUG TREATMENT 

Pharmacological management in ASD has traditionally 

targeted psycho-behavioral symptoms including anxiety, 

hyperactivity, aggression, irritability, and stereotypical 

behaviors.
56

  

 

Antidepressants are also used in treating behavioral symptom 

in ASD. One clinical trial has reported improvement in 

obsessive-compulsive symptoms with fluoxetine.
57

 There are 

also studies suggesting beneficial effects of other serotonin 

reuptake inhibitors (SSRI) such as citalopram
58

 and 

escitalopram.
59

 However, meta-analysis and Cochrane review 

did not reveal the efficacy.
60

 Moreover, one study suggests 

that citalopram induced more adverse events including 

impulseness, decreased concentration and hyperactivity.
61

 

Therefore, the effects of antidepressants are unclear and need 

further study. 

 

Many studies have investigated the efficacy of antipsychotics 

in ASD treatment for behavioral management. Typical 

antipsychotics such as haloperidol have been used much less 

due to the side effects, including extrapyramidal symptoms 

(EPS).
62

 Atypical antipsychotics have been used more often 

for behavioral dysfunction, such as steorotypies, irritability, 

hyperactivity, and aggression.
63

 Risperidone
64

 and 

aripiprazole
65

 are the two FDA-approved atypical anti-

psychotics for treatment of behavioral symptoms in children 

and adolescents with ASD. Both drugs have side effects, 

including weight gain and sedation.
66,67

 Other drugs such as 

neurostimulants (methylphenidate) have been used to treat 

ASD. Several clinical trials report beneficial effects, even 

though the adverse events were more common.
68-70

 Melatonin 

is used to treat sleep disorders. Studies have suggested the 

potential benefit in treating insomnia in ASD;
71-73

 however, 

larger trials are needed to confirm the results. Some studies 

report that oxytocin infusion reduced repetitive behaviors.
74,75

 

Two studies showed that intranasal oxytocin improved social 

interaction and communication of subjects with ASD.
76,77

 

These promising results warrant further study to demonstrate 

the efficacy. 

 

NOVEL TREATMENT 

Recent studies on the role of inflammation on ASD have led 

to the development of novel therapies. In the past, immune-

based therapies such as usage of steroid and IVIG have been 

investigated. Treatment with steroids shows some positive 

benefits. A single case study reported improvement in 

language and social skill after daily high-dose steroid.
78

 In 

one series of 32 children, 53% of subjects had improvement 

in EEG and language skills after prednisone treatment. 

However, the benefits reported were all transient. In addition, 

there is lack of large placebo controlled clinical trial due to 

side effects such as Cushingoid or long-term steroid effects.  

In the case of IVIG, there is no good evidence showing 

efficacy.
79

 

 

Immunomodulatory therapy with less broad side-effects may 

prove to be more effective regimen. Novel treatment has 

been delevoped recently. Flavonoid luteolin, which has the 

effects of anti-inflammation, microglial activation inhibition, 

and anti-oxidative, was shown to be beneficial in children 

with ASD.
80

 An open-label pilot study showed that dietary 

supplement containing 2 flavonoids (luteolin and quercetin) 

improved function in communication, social skill. The side-

effect includes transient increased irritability.
80

 The side-

effect profile appears to be much better than steroid. Luteolin 

also improved ASD-like behavior in animal models.
81

 

 

Actos is FDA approved for diabetes treatment. It has an anti-

inflammatory effect and has been tested in several different 

neurological diseases. One open-labeled study reports that 

pioglitazone (Actos) improved irritability, stereotopy, and 

hyperactivity in those with ASD.
82

 In one double-blinded, 

placebo-controlled trial, combination of the non-steroid anti-

inflammatory drug (Celecoxib) with risperidone was shown 

to have more improvement in repetitive behavior and social 

withdrawal as compared to risperidone alone treatment.
83

 

 

CONCLUSION 

Evidence suggests that neuroinflammation plays an important 

role in the pathogenesis of ASD from the early stage of the 

disease until the later phase. Multiple brain regions are 

involved in the process. Pharmaceutical treatments that 

reduce neuroinflammation may help to ameliorate the 

symptoms in ASD.  
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