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As the most common pediatric liver malignancy, hepatoblastoma (HB) accounts for more than 90% of 

primary hepatic malignant tumors in children less than five years of age in the US, and its incidence has 

been increasing in the past decades. Despite extensive studies, the pathogenesis of HB remains to be 

elucidated. Multiple signaling pathways may be involved in the oncogenic process of HB. The best 

characterized pathways include the canonical Wnt/beta-catenin pathway, the hepatocyte growth factor 

(HGF)/c-Met signaling pathway, the Notch pathway and the Hedgehog pathway. In addition, signaling 

molecules associated with these signaling pathways have been shown to be potential novel tumor markers 

for HB. Preoperative chemotherapy is the current standard of care for HB. Highly sensitive and specific 

tumor markers are not only important for the accurate diagnosis of HB but are also essential for 

predicting its clinical behaviors and prognosis. This review summarizes the recent advances in the 

molecular aspects of HB with a focus on the pathogenic signaling pathways and tumor markers. Their 

implications for diagnostics and prognostics are also discussed from a pathologist’s point of view. 

[N A J Med Sci. 2012;5(4):217-223.] 
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INTRODUCTION 
Primary liver cancers account for 1.1% of all pediatric 

malignancies in the US, and the rate is as high as 4% in 

infants.
1,2

 The annual incidence is 0.5-1.5 diagnoses per 1 

million children younger than 15 years for Western countries. 

Approximately 100-150 new cases per year are diagnosed in 

the US alone. The predominant hepatic malignant tumor in 

younger children is hepatoblastoma (HB), which accounts for 

more than 90% of primary hepatic malignancies in children 

under 5 year-old age.
3
 The median age at diagnosis of HB is 

18 months.  

 

The incidence of HB has been increasing in the past decades 

probably due to the improvements in diagnostic technology 

and the better outcomes for premature infants.
1
 The 

tumorigenesis of HB is complex and not well understood; 

however, some important signaling pathways are becoming 

elucidated. Potential novel tumor markers have also been 

identified. These advances in the molecular biology of HB 

are providing promising tools for the diagnostic pathology of 

HB and also for the prediction of the tumor’s clinical 

behavior, treatment outcome and prognosis. 
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HISTOLOGIC FEATURES OF HEPATOBLASTOMA  
The histologic classification of HB has undergone several 

revisions. Two types of HB, the pure epithelial type and the 

mixed epithelial and mesenchymal types, were proposed by 

Ishak and Glunz in 1967.
4
 As their names suggest, the former 

contains only epithelial tissue. The latter consists of both 

epithelial and mesenchymal components. In 1994, Stocker 

suggested six HB histologic patterns:
5 

I. Pure fetal epithelial; 

II. Mixed embryonal and fetal epithelial; III. 

Macrotrabecular; IV. Small cell undifferentiated; V. Mixed 

epithelial and mesenchymal type with teratoid features or VI. 

without teratoid features. The most common subtype is the 

mixed embryonal and fetal subtype, followed by the mixed 

epithelial and mesenchymal subtype. The other subtypes are 

rare (Figure 1).
1
 Currently, disagreements remain regarding 

the classification of HBs, and the original two-type 

classification has regained its popularity.  

 

The epithelial type is composed of fetal-type and/or 

embyronal-type cells (Figure 2). The fetal-type cells are 

large and polygonal with clear or granular cytoplasm. The 

nuclei are round to oval with a single nucleolus. Cells are 

arranged in irregular cords that are 2-3 cells thick. 

Extramedullary hematopoiesis is often present. In contrast, 

the cells of the embryonal component are small, elongated, 

hyperchromatic and with scant cytoplasm. Typically, the 

growth pattern is solid. However, rosette-like clusters, cords 
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and ribbons may be observed. The variants of the epithelial 

type include the small cell undifferentiated type, comprised 

of anaplastic small cells in sheets, and the macrotrabecular 

type, in which tumor cells are organized similarly to 

hepatocellular carcinoma (HCC).  

 

                      

Figure 1. Distribution of major HB subtypes. 

 

The mixed epithelial and mesenchymal type contains in 

addition to epithelial components, mesenchymal elements. 

The mesenchymal elements may be osteoid, cartilage, 

undifferentiated spindle cells, or, rarely, skeletal muscle or 

neural tissue. 

 

Some other primary hepatic malignancies of the childhood 

can mimic HB. This includes HCC which is the most 

common liver cancer of adolescents and adults, and occurs in 

12.5% of children younger than 5 years of age.
1
 Among 

children living in Asian countries with a high viral hepatitis 

rate, HCC is the most common liver cancer in children.
6
 

Undifferentiated embryonal sarcoma (UES) is another type of 

tumor that can mimic HB. UES is the third most common 

hepatic malignancy in children (after HB and HCC). Other 

malignancies such as embryonal rhabdosarcoma, 

angiosarcoma and primary extragonadal germ cell tumors, 

although much rarer, have been observed in children as well. 

These HB mimickers are treated differently and generally 

show a worse prognosis when compared with HB. Therefore, 

it is essential to exclude them before making a definitive 

pathologic diagnosis of HB. Ancillary diagnostic techniques, 

including immunohistochemistry, electron microscopy, flow 

cytometry, and cytogenetics, have limited utility. 

Accordingly, highly sensitive and specific diagnostic tumor 

markers for HB are greatly desired.  

 

 

 
 

Figure 2. Epithelial type HB. In this case, the mixed embryonal and fetal pattern is present (2a). The embryonal 

(arrow, 2b) and fetal type cells (arrowhead, 2b) show distinct morphologies (see text). Extramedullary 

hematopoiesis is evident (arrow, 2c). Immunohistochemically, both types of tumor cells are positive for Hep Par 

1 (2d).  
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MOLECULAR SIGNALING PATHWAYS OF 

HEPATOBLASTOMA 
HB is an embryonal tumor, and the tumor cells are derived 

from pluripotent hepatic stem cells. Gene expression 

profiling has shown HB to express hepatic progenitor 

markers. Immunohistochemistry has also demonstrated 

protein expression of these cancer stem cell markers.
7,8 

Multiple signaling pathways have been implicated in HB 

carcinogenesis. These include pathways implicated in a wide 

variety of tumors, such as the phosphatidylinositol 3 kinase- 

Akt (PI3K-Akt) and the insulin-like growth factor 2 (IGF2) 

pathways.
9,10 

Other pathways considered to be more specific 

to HB, which are the focus of this review.  

 

1. Wnt/beta-catenin signaling pathway. The evolutionally 

conserved Wnt signaling pathway is essential to the normal 

biological processes of development and self-renewal.
11,12 

Studies have also implicated genetic and epigenetic 

abnormalities in the Wnt pathway leading to various cancers, 

including hepatic malignancies.
13,14

 

 

The Wnt signaling pathway has been very well characterized, 

especially the canonical beta-catenin-dependent Wnt pathway 

(Figure 3)
15-18

. Wnt ligands bind to Frizzled (Fzd), a seven-

transmembrane receptor, and its co-receptor, the lipoprotein 

receptor-related protein (LRP) 5/6. This in turn inhibits 

serine/threonine phosphorylation of beta-catenin by glycogen 

synthase kinase 3β (GSK3β). The hypo-phosphorylated beta-

catenin cannot be degraded, resulting in its cytoplasmic 

accumulation and nuclear translocation. The nuclear 

localization of beta-catenin enables its binding to HMG-box 

transcription factors, such as T-cell factors (Tcf) and 

lymphoid enhancer factor (Lef), which eventually activates 

its final effectors. Multiple Wnt/beta-catenin target genes 

have been identified,
8,19-21 

including c-myc, cyclin D1, matrix 

metalloproteinase-7, FRA-1, c-Jun, urokinase plasminogen 

activator receptor, immunoglobulin transcription factor 2, 

EGF receptor and VEGF receptor. These genes are key 

regulators of a variety of biological processes including cell 

proliferation, anti-apoptosis and angiogenesis.  

 

The Wnt/beta-catenin signaling pathway can be turned off by 

the absence of Wnt ligand. In the absence of Wnt ligand, 

beta-catenin becomes phosphorylated by GSK3β on 

serine/threonine residues. Phosphorylated beta-catenin forms 

a multi-protein degradation complex with axins (axin1 and 

axin2) and adenomatous polyposis coli (APC), which binds 

to the ubiquitin ligase receptor β-transducin repeat-containing 

protein (β-TrCP) and undergoes ubiquitin-mediated 

degradation.
22,23

  

 

A large proportion of HBs contain beta-catenin gene 

(CTNNB1) mutations,
24,29

 and these mutations prevent beta-

catenin from being degraded. As a result, beta-catenin 

accumulates aberrantly in the cytoplasm, and then 

translocates to the nucleus. Nearly all HBs show increased 

beta-catenin levels in the cytoplasm and nucleus.
25,37 

It is 

believed that the nuclear localization of beta-catenin leads to 

uncontrolled hepatoblast proliferation (Figure 3).
26 

 

 
Figure 3. Schematic diagram depicts the Wnt/beta-catenin signaling pathway. Mutations in beta-catenin inhibits 

its ubiquitin-induced degradation, resulting in cytoplasmic accumulation and nuclear translocation. Nuclear 

beta-catenin activates c-myc, cyclin D1 and other target genes. This culminates in uncontrolled cell 

proliferation. 
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Interestingly, some HBs without beta-catenin mutations still 

display beta-catenin accumulation. This is probably because 

of other aberrant components in the pathway. Two thirds of 

sporadic HBs have been observed to possess APC gene 

alterations.
27,28 

APC is a co-factor of beta-catenin degradation 

complex; therefore, mutations in APC may prevent beta-

catenin from degradation and lead to its accumulation in the 

cells. Similarly, axin mutations have been shown in HB, 

which may also hinder the degradation complex from 

functioning.
29,30 

In addition, in the absence of beta-catenin 

mutations, HBs with overexpression of telomerase reverse 

transcriptase (TERT) also demonstrate beta-catenin 

accumulation.
31 

How TERT affects the beta-catenin levels is 

not well understood. 

 

It is recently shown that the molecular signature of 

Wnt/catenin signaling in HB is dependent on the liver 

context.
 

It may contribute more to the genesis of the 

embryonal than the fetal component of HB.
32

 Of note, the 

non-canonical Wnt pathway, which uses Wnt11 as a ligand 

and activates the protein kinase C pathway, may function to 

antagonize the canonical Wnt pathway.
33 

 

 

2. Hepatocyte growth factor (HGF)/c-met signaling 

pathway. HGF/c-met signaling may contribute to the 

pathogenesis of HB because it also leads to aberrant beta-

catenin accumulation in hepatoblasts.
34-37 

 

 

HGF is the natural ligand for c-met receptors. C-met is a cell 

surface receptor tyrosine kinase. Upon HGF binding, c-met 

undergoes autophosphorylation on tyrosine residues.
38 

Phosphorylation of tyrosine residues creates a docking site 

for intracellular adapters via SH-2 domains and other 

recognition motifs, leading to further downstream signaling. 

Beta-catenin is one of this tyrosine kinase’s substrates. 

Tyrosine phosphorylation of beta-catenin shields beta-catenin 

from serine/threonine phosphorylation, subsequent 

degradation, and leads to beta-catenin accumulation in the 

tumor cells.
39 

This accumulation is independent of Wnt but 

the consequences are the same.  

 

Besides beta-catenin, other important substrates for the c-met 

tyrosine kinase include PI3K and Ras/MAPK,
40

 which are 

involved in many tumorigenic pathways.  

 

3. Notch signaling pathway. The Notch signaling is an 

important pathway in stem cell renewal, differentiation, 

angiogenesis and endothelial sprouting.
41,42

 It has been shown 

to play a critical role in both hepatocyte embryogenesis and 

cholangiocyte differentiation.
43

  

 

The Notch ligands belong to the Delta-Serrate-Lag 2 (DSL) 

family of ligands. In mammals, there are five Notch ligands 

(three Delta and two Jagged proteins), which signal through 

four Notch receptors.
44

 The binding of Notch ligands to their 

receptors initiates the proteolytic cleavage of the Notch 

receptor by γ-secretase presenilin, which in turn releases the 

Notch intracellular domain (NICD).
45

 NICD then translocates 

to the nucleus and binds to a transactivation complex known 

as CSL, which consists of C promoter binding factor 1 (CBF-

1), suppressor of hairless and Lag-1. This interaction 

activates target genes such as Hairy and Enhancer of Split 

(Hes1, Hes5 and Hes7), Hes-related proteins (HERP1 and 

HERP2) and Deltex1.
46

  

 

Deregulation of Notch signaling in HB has been well 

documented.
47,48

 Notch activation is more associated with the 

pure fetal subtype of HB,
24

 as compared to the Wnt/beta-

catenin signaling. The role of Notch signaling in 

tumorigenesis appears to depend on the cellular context.
49

 

The crosstalk between Notch and Ras, a cell survival 

pathway, or the death receptor 5, an apoptotic pathway, may 

determine whether Notch functions as an oncogene or a 

tumor suppressor, respectively.
50,51

  

 

4. Hedgehog signaling pathway. The Hedgehog signaling 

pathway was first delineated in Drosophila. It is conserved in 

humans and plays a crucial role in controlling cell 

specification and pattern formation. It is essential for 

embryonic development and mature tissue homeostasis.
52

  

 

In mammals, there are three Hedgehog ligands, namely Sonic 

Hedgehog, Indian Hedgehog and Desert Hedgehog. They 

bind to two receptors, Patched (Ptc) 1 and Ptc2.
53

 Ptc is an 

inhibitor of Smoothend (Smo), a protein related to the 

Frizzled family of Wnt receptors and to other 7-

transmembrane G protein-coupled receptors. In the absence 

of Hedgehog ligand, Ptc represses Smo and prevents the 

activation of Hedgehog signaling.
54,55

 Upon binding to 

Hedgehog ligands, Ptc relieves this inhibition and activates 

Smo signaling. Glioblastoma (Gli) family transcriptors (Gli1-

3) are activated by Smo and translocate into nucleus. This 

induces target genes, including beta-catenin, cyclins, and 

insulin-like growth factor 2 (IGF-2).
56,57

 Gli1 and Gli2 

predominantly act as transcriptional activators, and Gli3 may 

function as a repressor.
58

  

 

The Hedgehog pathway has been intensely studied. 

Activation of Hedgehog signaling induces a variety of 

tumors, including hepatic malignancies.
59

 In the case of HB, 

many signaling molecules of the Hedgehog pathway, Sonic 

Hedgehog, Ptc, Smo and Gli1, have been shown to be 

overexpressed in HB.
60,61

 Specific blockade of Hedgehog 

signal transduction inhibits the growth of HB, highlightling 

the importance of this pathway in the oncogenesis of HB.
60

 

 

TUMOR MARKERS FOR HEPATOBLASTOMA 
The need to obtain an accurate pathologic diagnosis on 

biopsy tissue is of great clinical importance, as the current 

standard treatment modality for HB involves pre-surgical 

chemotherapy.
62,63

 A diagnostic biopsy is now mandatory 

before any chemotherapy can commence. With limited tissue 

available and several HB mimickers to exclude, highly 

sensitive and specific HB markers would facilitate HB 

diagnostics.  

 

HB staging is found to correlate with its clinical outcome.
64

 

Neither age, sex, size of tumor, or histologic type is a reliable 

prognostic indicator. Several staging systems for HB have 

been developed by different professional organizations,
65-68
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and the utility of these systems vary.
69

 HB prognostic 

biomarkers could complement clinical staging or serve as an 

independent factor for predicting its clinical outcome. It is 

proposed that in the future, a new classification system for 

HB, with particular emphasis on prognostics, should be 

developed based on the molecular make-up of the tumor.
70

 

 

1. Current common markers used in diagnostic 

pathology. Similar to HCC, immunoreactivity for AFP and 

Hep Par 1 (Figure 2d) has been used to distinguish HB from 

non-hepatic tumors.
71,72

 The usefulness of these markers is 

limited when other primary liver cell malignancies are in the 

differential diagnosis. Interestingly, it has been demonstrated 

that patients with low serum AFP levels are less likely to 

achieve curative resections, and hence lower levels of AFP 

may indicate a poorer prognosis.
73

 Most recent data indicate 

that during preoperative chemotherapy, a significant decrease 

in serum AFP level may serve as a survival predictor.
74

 Other 

antigens expressed in HB include polyclonal CEA, 

cytokeratins, glypican 3, alpha-antitrypsin, CD99, CD56, 

neuroendocrine markers, NB84, Bcl-2 and Desmin.
72,76,77

 The 

specificities of these antigens vary, and none of them can 

provide a definitive pathologic diagnosis.  

 

2. Markers associated with Wnt signaling pathway. The 

Wnt/beta-catenin pathway plays a pivotal role in HB 

oncogenesis; therefore, the effectors of this pathway may 

have both diagnostic and prognostic values. Beta-catenin is 

the common final effector of several HB oncogenic 

pathways; therefore, it is not surprising that its accumulation 

is detected in almost all HB cases.
25,37 

This fact may render 

beta-catenin a highly sensitive marker for HB. However, it is 

not specific to HB, as 20-40% HCC also have beta-catenin 

accumulation.
78,79 

Beta-catenin localized to the nucleus (as 

opposed to the cytoplasm) correlates with shorter survival 

time in HB patients. This raises the possibility of using 

nuclear beta-catenin as a prognostic marker for HB.
26

 But 

this is still controversial,
80

 and further studies are needed to 

address the discrepancies between these observations. As for 

cyclin D1, one of the first identified Wnt-regulated target 

genes, previous work has yielded contradictory data,
81,82

 but a 

more recent large scale study suggests that it is a potential 

prognostic indicator.
83

 The C-myc oncogene is upregulated in 

many tumors, and its expression is of little value for the 

specific pathologic diagnosis of HB. However, the 

overexpression of some microRNAs driven by c-myc 

expression may account for the aggressive behavior of HB, 

and hence these microRNAs may be useful as markers for 

poor prognosis of HB.
84

 TERT overexpression may also 

predict an unfavorable clinical course.
31

 

 

3. Markers associated with other signaling pathways. It 

has been shown that c-met level decreases significantly in 

HB following chemotherapy, but beta-catenin nuclear 

localization remains unaffected. Therefore, c-met level may 

predict the response of HB to chemotherapy.
37

 Delta-like 

protein (DLK) is a poorly understood membrane protein that 

functions as a negative regulator of Notch signaling. DLK 

may prove to be a highly sensitive and specific 

immunohistochemical marker for HB.
85

 Notch2 is 

overexpressed in HB and downregulated in HCC.
47,86

 Notch2 

immunoreactivity may aid in differentiating HB from HCC 

on biopsy specimens. As far as the Hedgehog pathway is 

concerned, recent research by Li et al suggests Gli1 

expression may be an independent prognostic marker for 

HB.
87

  

 

4. Other markers. Expression profiling and differential 

screening have discovered multiple other tumor markers 

which may be of potential diagnostic or prognostic value for 

HB. As a member of the polo-like kinase (PLK) family, 

PLK1 is significantly upregulated in HB and the level of 

PLK1 expression may predict the prognosis of HB. In 

contrast, PLK4 downregulation is considered to be associated 

with poor prognosis in HCC.
88

 Loss of expression of 

carcinoembryonic antigen-related cell adhesion molecule 1 

(CEACAM1) has been demonstrated in tumors with a high 

metastatic potential and is considered to be a marker for poor 

prognosis in patients with HB.
89

 DNA methylation is an 

important mechanism of gene regulation. Hypermethylation 

of the HB associated genes, such as Ras association domain 

family 1A (RASSF1A) and metallothionein 1G (MT1G), 

may predict the clinical outcome of HB.
90-92

 

 

CONCLUSIONS 
The molecular aspects of HB have been an area of interest of 

researchers and clinicians for years. Advances in this field 

have allowed a better understanding of the pathogenesis and 

clinical behavior of this tumor and have also uncovered many 

potential HB tumor markers. Further characterization of these 

molecular markers will provide tools for both pathologic 

diagnostics and prognostics of HB.  
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