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The renin-angiotensin system is an essential regulatory system for blood pressure and fluid homeostasis.  

Angiotensinogen is the only known precursor of all the peptides generated in this system.  While many of 

the basic understandings of angiotensinogen have come from research efforts to define its role in blood 

pressure regulation, novel pathophysiological functions of angiotensinogen have been discovered in the last 

two decades including kidney developmental abnormalities, atherosclerosis, and obesity.  Despite the 

impressive advance in the understanding of angiotensinogen gene structure and protein functions, some 

fundamental questions remain unanswered.  In this short review, we provide contemporary insights into 

the molecular characteristics of angiotensinogen and its pathophysiological features.  In light of the recent 

progress, we emphasize some newly recognized functional features of angiotensinogen other than its 

regulation on blood pressure. 
[N A J Med Sci. 2011;4(4):183-190.] 
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INTRODUCTION 
Angiotensinogen (AGT) is a glycoprotein that is the unique 

substrate of the renin-angiotensin system. Through sequential 

cleavages by either the classic enzymatic pathway, renin and 

angiotensin-converting enzyme (ACE), or alternative 

pathways, AGT gives rise to a spectrum of angiotensin 

peptides, with angiotensin (Ang) II being the major effector 

peptide   that   regulates   blood   pressure  and  sodium/water 

homeostasis.  Many components of the renin-angiotensin 

system including renin, ACE, as well as AngII and its 

receptors are well characterized and have been 

comprehensively studied in animal models.  By contrast, 

many attributes of AGT have received less attention. This 

may be partially due to the traditional view of AGT as a 

passive substrate and lack of pharmacological inhibitors that 

directly target the protein. The development of many state-of-

the-art techniques including the successful creation of cell-

specific deficient mice is providing new insights into this 

substrate of the renin-angiotensin system.  This review 

briefly introduces the current knowledge regarding the 

molecular and pathophysiological features of AGT and 

explores the similarities between humans and mice since the 

latter are considered the most convenient animal model to 

understand the roles of AGT in many human diseases.  

Specifically, we will highlight atherosclerosis and obesity. 
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MOLECULAR CHARACTERISTICS OF AGT 

Gene Structure of AGT  

The AGT gene in humans and rodents was cloned, mapped 

and characterized throughout the 1980s.
1-7

 It is well 

conserved among vertebrates and has homologs in 

invertebrates such as fish.
8
  Human AGT gene is a single-

copy gene, locating within 20 Mb to the end of the long arm 

(1q42.2) on chromosome 1. It contains 5 exons and 4 introns, 

which spans 12,063 bp (nucleotide 230,838,274 - 

230,850,336) on chromosome 1 and encodes 485 amino 

acids.  The first exon contains 500 bp of the 5’-untranslated 

region.  The second exon codes the 33-amino-acid signal 

peptide and more than half of the mature protein. Exon 5 

encompasses the C-terminus of the protein as well as over 

600 bp of the 3’-untranslated region.  

 

The AGT gene in mice is similar to the human gene in terms 

of genomic size, gene structure, and coding exons (encoding 

482 amino acids versus 485 amino acids in humans).  It is 

located on chromosome 8 and close to the chromosome end, 

within only 4.6 Mb to the telomere, which makes genetic 

manipulations of this gene in mice an arduous task.  

 

Protein Characteristics of AGT  

Human AGT is a heterogeneous plasma glycoprotein, mainly 

synthesized in hepatocytes. After removal of the 33-amino-

acid signal peptide, the 452-amino-acid mature protein with 

the first 10 amino acids corresponding to AngI is secreted 

into plasma or extracellular compartments. The heterogeneity 

of plasma AGT is primarily due to variable glycosylation.
9
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Human AGT protein contains four putative sites for N-linked 

glycosylation (Asn-X-Ser/Thr): Asn14, Asn137, Asn271 and 

Asn295.  In vitro site-mutagenesis study demonstrates that all 

four sites can be glycosylated, with preference at Asn14 and 

Asn271.
9
  Asn14 is close to the renin cleavage site (Leu10-

Val11), and its glycosylation has been demonstrated to lower 

the affinity of AGT for renin.
9
  Asn14 glycosylation is also 

present in mice, but not in rats.  These glycosylation sites 

appear to have no critical roles on folding, intracellular 

trafficking, or secretion of the AGT protein.
9
 

 

Human AGT protein contains four cysteines, two of them 

forming Cys18-Cys138 linkage that are conserved in all 

species.
9,10

  The crystal structure of human AGT shows that 

the formation of Cys18-Cys138 disulphide bridge confers a 

conformational change that allows access of renin to its 

cleavage site of AGT.  It has been demonstrated that 

oxidative status of AGT has an impact on the rate of AGT-

renin reaction.
11

 It is unknown whether this disulphide bridge 

has similar properties in mouse AGT. 

 

Another noteworthy feature is the species specificity of 

AGT-renin reaction.  For example, human AGT cannot be 

cleaved by mouse renin.
12,13

  While this may be influenced by 

an amino acid substitution at the renin cleavage site, Leu10-

Val11 bond in humans versus Leu10-Leu11 bond in mice,
13

 

the mechanism of this unique feature has not been completely 

unraveled. 

 

The cleavage of intact AGT by renin leads to the generation 

of both AngI and des(AngI)-AGT, the remaining residues 

after the removal of AngI that accounts for more than 95% of 

the AGT protein sequence and maintains a typical serpin 

folding. The relative abundance of intact versus des(AngI) 

form has not been characterized.  There is some evidence that 

des(AngI)-AGT itself has biological properties that may 

relate to the serpin characteristics of the protein.
14,15

 

 

Regulation of AGT 

AGT gene expression is under developmental and hormonal 

controls in a cell type-specific manner.
16

  It is generally 

accepted that the predominant regulation of AGT occurs at 

the transcriptional level, although some post-transcriptional 

regulation also exists.
17

  AngII has been consistently shown 

to enhance mRNA stability of AGT and exert positive 

feedback on the AGT protein production.
17-21

  AngII 

upregulates mRNA abundance of AGT in hepatocytes 

through nuclear factor-kappaB activation,
22

 and increases 

plasma  AGT protein via action of signal transducer and 

activator of transcription 3 upon inducing interleukin-6.
21,23

  

In our laboratory, we have consistently observed over 2-fold 

increase of plasma AGT concentrations in mice with 

exogenous AngII infusion (unpublished data).  The positive 

feedback of AngII on AGT is balanced by its negative 

feedback on renin, the rate-limiting enzyme in the synthesis 

of angiotensin peptides.   

 

Multiple putative cis-acting DNA regulatory elements, 

including glucocorticoids, estrogen, and acute phase 

responsive elements, are located within a region of 1 kb that 

is immediate upstream of human AGT gene.
2,6

  

Dexamethasone administration leads to striking increases of 

AGT mRNA abundance in liver and modest increases in 

brain.
24,25

  However, increases of the AGT protein are much 

less than the mRNA increases.
25

  Estrogen is another positive 

regulator of AGT synthesis.  Plasma AGT concentrations 

increase in parallel with estrogen during pregnancy.  

Synthetic estrogen in oral contraceptive pills also increases 

plasma AGT concentrations in a dose-dependent manner. 
25

  

In contrast to the direct interactions of glucocorticoids and 

estrogen on the 5'-region of the AGT gene through their 

corresponding receptors, thyroid hormones seem to affect 

AGT mRNA abundance dependent on a secondary gene or 

protein, since their effects can be blocked by cycloheximide, 

an inhibitor of protein synthesis.
25

  In addition, for all these 3 

hormonal regulations, there are many confounding factors, 

such as a malignantly high dose above the physiological 

concentrations, a certain approach of administration, or 

interactions with a secondary gene or protein, that complicate 

the interpretation of the reported findings.
25

  Therefore, their 

roles as primary regulators of AGT require further 

examination. 

 

Tissue and Cellular Distribution of AGT 

AGT is promptly secreted from cells into extracellular 

compartments.
26

 Therefore, the distribution of AGT synthesis 

is more commonly determined by mRNA rather than protein 

abundance.  AGT mRNA has been consistently detected in 

many tissues such as liver, adipose, brain, heart, kidneys, and 

vessels.
27-30

 It has also been identified in spinal cord, lungs, 

adrenal glands, large intestine, stomach, spleen and ovaries 

with low or variable abundances.
24,30

  While most AGT 

mRNA is found in adult liver, it may be mainly present in 

adipose tissues, brain, and kidneys at embryonic stage.  AGT 

production rises remarkably in liver after birth and reaches 

adult level within 24 hours.
31

 

 

At a cellular level, besides hepatocytes, it is widely accepted 

that adipocytes, proximal tubule epithelial cells, and 

astrocytes are AGT synthesizing cells.
29,32,33

  Among all 

extra-hepatic tissues synthesizing AGT, only adipose tissue 

has been show to have an impact on plasma AGT 

concentrations in adipocyte-specific AGT deficient mice.
34

 

On the other hand, liver-specific deletion of a floxed human 

AGT transgene using adenoviral delivery of Cre recombinase 

largely diminishes plasma human AGT concentrations.
35

 It 

infers that circulating AGT cannot be compensated by extra-

hepatic tissues in the absence of hepatocyte-derived AGT.  

However, a hepatocyte-specific AGT deficient mouse model 

is needed for a definite conclusion. 

 

Enzymes using AGT as a Substrate 

While AGT  is  the  only  known  substrate of all angiotensin 

peptides of the renin-angiotensin system, there are many 

enzymes that have been identified to use AGT as a 

substrate.
36-39

 Renin, a plasma aspartyl protease, is best 

known for cleaving AGT into AngI.  Indeed, AGT is the only 

defined substrate for renin.
40

  The rate-limiting AGT-renin 

reaction and AGT being the unique renin substrate make 

renin the most effective target to inhibit the renin-angiotensin 
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cascade.
41

  There is compelling evidence that renal renin is 

secreted into plasma to cleave AGT released from liver.
37,42-44

  

Therefore, this is considered a systemic pathway to generate 

angiotensin peptides.  There are controversial findings 

regarding the local production of renin outside kidneys.  

While some studies have reported that kidney-derived renin 

is the only source to catalyze AGT locally,
44,45

 there is 

growing evidence that renin can also be synthesized in tissues 

other than kidneys or non-juxtaglomerular cells.
46-49

 In 

addition to renin, many other enzymes such as cathepsin D, 

cathepsin G, kallikrein, pepsin, tissue-plasminogen activator, 

tonin, and trypsin have been demonstrated to convert AGT 

into either AngI or AngII.
38,39,50,51

  These enzymes are 

abundant in tissues or some cell types, which have led to 

speculation that these enzymes may have impacts on the local 

generation of angiotensin peptides.  However, most enzymes 

require an acidic environment (pH range 4-7) to actively 

catalyze AGT.
39

 Currently, the physiological significance of 

these enzymes using AGT as a substrate in vivo has not been 

established. 

 

Plasma Concentrations of AGT 

Plasma AGT concentrations in humans are approximately 1 

μM or 60 μg/ml (range 28 - 71 μg/ml).
52

 This is close to the 

Michaelis-Menton constant (KM) of renin (1.25 μM).
53

  This 

indicates both AGT and renin concentrations are important 

for the rate of AngII generation, thus control the tonic 

activity of the renin-angiotensin system.  Mice have much 

lower plasma AGT concentrations (≈ 20 - 30 nM or 1216 ± 

101 ng/ml in C57BL/6 strain).
54

  Its implications are not clear 

that plasma AGT concentrations differ by over one order of 

magnitude between humans and rodents.  

 

There is no standard method for measuring AGT protein 

concentration.  Two approaches, indirect enzymatic assay 

and direct radioimmunoassay or ELISA, are currently used 

by many investigators.  Indirect assay only measures intact 

AGT through equivalent AngI released from the cleavage of 

AGT by renin in a given amount of time.  Direct assay 

measures total AGT, which consists of both intact AGT and 

des(AngI)-AGT.  Recently, a simple and sensitive sandwich 

ELISA kit has been developed to measure AGT 

concentrations in both humans and rodents.
52,54

  

Unfortunately, this kit does not distinguish the intact AGT 

from des(AngI)-AGT, which is important when changes in 

plasma concentrations of intact AGT are not correlated with 

that of total AGT.  For instance, neither sodium depletion nor 

pharmacological inhibition of the renin-angiotensin system 

affects plasma total AGT concentrations, because both intact 

AGT and des(AngI)-AGT have significant changes in 

opposite directions.
55,56

 

 

Plasma and Tissue Catabolism of AGT 

The cleavage of AGT by renin is well known.  However, 

there is a relative paucity of information of plasma clearance 

of either the intact or des(AngI) form of AGT.  Using 

radioiodinated tracer studies of AGT, the half-life of the 

protein has been estimated to be ~5 hours in rats and 

rabbits.
57-59

   It is unknown whether the intact and the cleaved 

forms have similar rates of clearance from plasma. 

There is also spare evidence of tissues responsible for the 

catabolism of AGT.  A single line of evidence displays that 

the protein is predominantly accumulated in kidney.
59

 

However, this study was performed with directly 

radioiodinated proteins in which the label may not 

accumulate at the loci of catabolism.  More meaningful 

analysis may be obtained by the conjugation of 

radioiodinated residualizing labels to track tissue sites of 

AGT catabolism.
60

 

 

PATHOPHYSIOLOGICAL FEATURES OF AGT 

Genetic Manipulations of AGT in Mice 

It has been reported that mice overexpressing either rat
61,62

 or 

human
63,64

 AGT alone do not exhibit any significant 

phenotype.  In contrast, mice carrying both human AGT and 

renin genes display pronounced phenotypes including 

increased blood pressure, cardiac hypertrophy, and kidney 

abnormalities,
63,64

 providing evidence for the species 

specificity of AGT-renin reaction. 

 

AGT deficient mice have been developed by two 

laboratories.
65,66

 Besides expected profound reductions in 

blood pressure, AGT deficient mice also have renal and 

cardiac dysfunctions.  However, pathologies in these two 

organs are distinct between transgenic AGT overexpressing 

mice and AGT deficient mice.  While mice with human AGT 

and renin transgenes develop nephrosclerosis and cardiac 

hypertrophy,
67

 AGT deficient mice exhibit hydronephrosis 

and dilated cardiomyopathy.
68,69

  These distinct pathologies 

strongly indicate that tight regulation of AGT production is 

important to maintain normal blood pressure as well as 

normal renal and cardiac structures and functions. 

 

Characteristics of mice with genetic manipulations of AGT 

are summarized in Table 1.  It is speculated that the 

phenotypic changes in these mouse models are directly 

related to the changes of AngII production since the 

phenotypes in AGT deficient mice are also observed 

equivalently in renin, ACE, and combined AT1a and AT1b 

receptor deficient mice.
70-73

  However, exogenous AngII or 

tissue-specific enhancement of AngII cannot fully recover the 

phenotypes in AGT deficient mice,
74-76

 indicating that AGT 

may have both AngII-dependent and AngII-independent 

functions.  In addition, phenotypes in AGT deficient mice 

can only be partially rescued by restoring AGT in circulation 

or one to multiple tissues,
75-80

 supporting a theme that this 

glycoprotein produced in both systemic and cell-specific 

manners synergistically contribute to its pathophysiological 

functions.  Recently, an AGT floxed mouse model has been 

reported, which will permit the determination of cell-specific 

deficiencies of AGT on many pathophysiological processes.
34

  

 

Genetic Manipulations of AGT in Mouse Atherosclerosis 

and Obesity 

There is compelling evidence that the renin-angiotensin 

system plays a critical role in the development of 

atherosclerosis.
81,82

  While many mouse atherosclerosis 

studies have directly targeted AngII type 1 receptors or either 

of the two critical enzymes (renin and ACE),
49,56,83-87

 no 

study has addressed the role of AGT in atherosclerosis.  We 
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have detected AGT protein in mouse atherosclerotic lesions 

using immunostaining.
85

  One study has reported that mice 

with human AGT and human renin transgenes in the 

C57BL/6 background had augmented atherosclerosis, 

compared to the wild type controls, when fed a high-fat diet 

for 14 weeks.
88

  There is no study that has determined the 

role of AGT deficiency in mouse atherosclerosis.  This is 

possibly due to their low neonatal survival rate and severe 

phenotypes that hamper the breeding of AGT deficiency 

mice to hypercholesterolemic apolipoprotein E or low density 

lipoprotein receptor deficient mice.
68

 

 

Potential associations of AGT with obesity and adipocyte 

metabolism have long been noticed in animal models and in 

vitro studies.  AGT mRNA abundance is increased in adipose 

tissues of obese rodents.
89-91

  Whole body deficiency of AGT 

leads to a lean phenotype that is manifested with impaired 

high fat diet-induced body weight gain, reduced fat mass, and 

increased locomotor activity in mice.
92,93

  However, these 

mice have severe phenotypes that strongly impact the normal 

development and growth.
64

  The unhealthy condition may 

confound the interpretation of the observed metabolic 

phenotypes.  In comparison with AGT deficient mice, mice 

with human AGT and renin transgenes also exhibit reduced 

body weight gain compared to their wild type controls, 

although these mice have increased tissue and plasma AGT 

abundance.
94

  The paradoxical observations require 

systematic research on the effects of this gene in obesity. 

 

Recently AGT floxed mouse model has been developed to 

probe the effects of cell-specific AGT deficiency in many 

pathophysiological states.
34

  These mice have normal 

neonatal survival rate and display no gross kidney 

abnormalities.  Using Cre recombinase trangenic approach 

under the control of a specific promoter, this mouse model 

will provide an optimal approach to understanding the 

relationship between AGT and many pathophysiological 

features as well as the underlying mechanisms in a cell-

specific mode.   

 

 

 

 
 

 

Genetic Association of AGT with Atherosclerosis and 

Obesity in Humans 

The correlation of AGT gene with human diseases has been 

investigated primarily through screening its single nucleotide 

polymorphisms (SNPs).   

 

The first compelling genetic evidence of M235T 

polymorphorism implicating a causal relationship between 

the AGT gene and essential hypertension in humans was 

published in 1992.
95

  Since this initial report, M235T has 

become the most frequently studied SNP in AGT for 

hypertension.  It has also been investigated frequently in 

patients with atherosclerotic diseases. While a few studies 

failed to define an association of M235T with 

atherosclerosis,
96

 most studies demonstrated that this 

polymorphism was associated with atherosclerosis in 

different populations.
97-100

 In addition to M235T, a few 

studies have also reported that T174M, another 

polymorphism in exon 2 of the AGT gene, is related with risk 

factors or prevalence of coronary artery disease.
101,102

 

Although there is no direct evidence, animal studies and in 

vitro experiments indicate that AGT may also play an 

Figure 1. Schematic Representation of 

Human AGT Gene and Protein.   

Human angiotensinogen (AGT) gene contains 

5 exons.  Exon 2 encodes the majority of the 

protein. After the removal of a 33 aa signal 

peptide, the 452 aa mature AGT is secreted. 

Cleavage of mature AGT by renin gives a 

decapeptide, AngI, and the 442 aa des(AngI)-

AGT. AngI is further cleaved by angiotensin-

converting enzyme (ACE) into an octapeptide, 

AngII. Two cysteines at 18 and 138 form a 

disulphide bridge (Cys18-Cys138) that confers 

a conformational change allowing access of 

renin to the AngI cleavage site of AGT.  

Diagrams were drawn proportional to actual 

gene and protein size based on the University 

of California Santa Cruz Human Genome 

Browser Feb 2009 Assembly.  UTR: 

untranslated region; CDS: coding sequences; 

ACE: angiotensin-converting enzyme. 



 
 
 
North American Journal of Medicine and Science                                    Oct 2011 Vol 4 No.4                                                                              187 

 

 

important role in obesity in humans. Investigations of the 

common AGT polymorphisms have shown a significant 

association of M235T with obesity in female hypertensive 

patients in different populations,
103-105

 although it failed to 

display any correlation in males.
106

  

 

Currently, genetic polymorphism analyses of the AGT gene 

are a cardinal approach to defining an association of this gene 

with human diseases.  Many studies have reported potential 

links between SNPs in AGT and atherosclerosis or obesity, 

although their causal relationships remain to be established.  

For both atherosclerosis and obesity, the reported 

associations are either modest or only significant in a specific 

disease state, either of the two genders, or certain age group 

within one study. Confounding factors including small 

sample size, population heterogeneity, environmental and 

culture/ethic differences, multiple disease states, and 

complex interactions within the gene or with many other 

genes, may complicate the interpretation of these 

polymorphism studies.  Therefore, it is important to control 

the confounding factors in order to define a causal link 

between the AGT gene and atherosclerosis or obesity. 

 

Table 1. Characteristics of mice with genetic manipulations of AGT. 

 

 

Manipulation 

 

Strategy 

Pathophysiological Features  

References 
BP kidney heart Others 

rat Agt overexpression rat Agt transgene under the control 

of the mouse metallothionein I 

promoter 

↔ ND ND ND [61] 

rat Agt transgene under the control 

of the rat Agt promoter 

↑ nephro- 

sclerosis 

hyper- 

trophy 

ND [62,76] 

 

human Agt overexpression  human Agt transgene under the 

control of the human Agt promoter 

↔ ↔ ↔ ↔ [63]  

rat Agt and Ren 

overexpression  

breeding of rat Agt transgenic mice 

with rat Ren transgenic mice 

↑ 

 

ND ND ND [61] 

human Agt and Ren 

overexpression 

breeding of human Agt transgenic 

mice with human Ren transgenic 

mice 

↑ 

 

nephro- 

sclerosis 

hyper- 

trophy 

↓ body 

weight 

[64,94] 

whole body Agt 

deficiency (Agt -/-) 

insertion of a neo cassette to the 

exon 2 prior to the start codon of 

the mouse Agt 

↓ hydro- 

nephrosis 

cardio-

myopathy 

↓ body 

weight, fat 

mass & 

locomoter 

activity 

[65,66] 

rat Agt overexpression in 

adipocytes 

rat Agt transgene under the control 

of aP2 promoter in wild type mice 

↑ ND ND ↑ body 

weight & 

fat mass,  

↓ energy 

expenditure 

[79] 

rat Agt adipocyte-specific 

expression 

rat Agt transgene under the control 

of aP2 promoter in Agt -/- mice 
↔ ↔ ND 

Agt adipocyte-specific 

deficiency 

breeding of Agt floxed mice with 

trangenic mice expressing Cre 

recombinase under the control of 

aP2 promoter 

↓ in 

aged 

mice 

ND ND ↔ body 

weight & 

fat mass  

[34] 

 
Notes: Agt = angiotensinogen gene ; Ren = renin gene; BP = blood pressure; ↔ = no change; ↑ = increase; ↓ = decrease; ND = not determined.  The 

pathophysiological changes were determined in comparison with their relative wild type littermates. 

 

 

 

CONCLUSIONS AND PERSPECTIVES 
The unique position of AGT in the renin-angiotensin system 

and its distinct features may make this protein become an 

attractive target in developing effective therapeutic strategies 

in many  human  diseases such as atherosclerosis and obesity.   

 

However, despite great efforts on discovering the molecular 

mechanisms and clinical relevance of AGT gene and protein 

functions, some fundamental questions remain unanswered.  

These include: (1) Are the effects of AGT on its 
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pathophysiological phenotypes, in part or in whole, 

dependent on AngII? (2) What is the correlation of AGT 

produced in local tissues with the circulating pool? What is 

the relative contribution of local versus circulating AGT to its 

pathophysiological functions? (3) What is the fate of 

des(AngI)-AGT? Is it degraded rapidly after the release of 

AngI, or is it biologically functional, independent of the 

classic renin-angiotensin system? (4) As demonstrated by the 

crystal structure of AGT, Cys18-Cys138 linkage determines 

the accessibility of its cleavage site to renin. Is the 

modulation of this disulphide bond relevant to the 

development or progress of its pathophysiological functions? 

These unanswered questions provide both challenges and 

opportunities to explore the mechanisms and effects of AGT 

in human diseases. The current advancement of many state-

of-the-art techniques, including reconstructing AGT protein 

and the availability of cell-specific AGT deficient mice, 

provides excellent tools to answer these questions.  
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