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Gastrointestinal stromal tumors (GISTs) are common mesenchymal neoplasms in the gastrointestinal (GI) 

tract that need to be differentiated from other GI mesenchymal tumors. They often present with 

heterogeneous features based on the anatomic locations, histomorphology and gene mutation status, which 

may lead to diagnostic and treatment challenges. Over the past decade, numerous studies revealed that 

KIT and PDGFRα tyrosine kinase pathways play key roles in the molecular pathogenesis of GISTs. 

Subsequently, specific biomarkers, such as CD117 and DOG1, have been developed and greatly improved 

the diagnostic accuracy. Moreover, advances in understanding the molecular nature of GISTs also provide 

valuable therapeutic targets. Two tyrosine kinase inhibitors, Imatinib and Sunitinib, have currently been 

approved for treating patients with advanced and metastatic GISTs.  

[N A J Med Sci. 2012;5(2):94-102.] 
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INTRODUCTION 

Gastrointestinal stromal/mesenchymal neoplasms are often 

divided broadly into two major groups. The more common 

one consists of tumors that are referred to as gastrointestinal 

stromal tumors (GISTs). The less common group consists of 

a variety of GI tract stromal neoplasms that are histologically 

identical to their soft tissue counterparts, including smooth 

muscle cell tumor, schwannoma, fibromatosis, lipoma, 

hemanigoma, and peripheral nerve sheath tumors. 

 

GISTs most occur in older individuals with no apparent 

gender predilection. Although GISTs do occur in children, 

their pathogenesis and clinical behavior are quite different, 

and are usually considered as a separated clinicopathological 

entity. Epidemiologic studies suggested that there are 

approximately 4000-6000 new GIST cases in United States 

annually. Most GISTs are sporadic, but about 5% of them are 

associated with tumor syndromes, such as Neurofibromatosis 

1, Carney’s triad and familial GISTs.  

 

Over the past decade, significant advances have been made in 

the molecular pathogenesis of GISTs. These progresses not 

only greatly improved the diagnostic accuracy but also 

present specific therapeutic targets. Here we provide an 

overview of the key clinicopathologic and 

immunohistochemical features of GISTs and the differential 

diagnoses from other gastrointestinal mesenchymal tumors. 

In addition, we discuss the advances in the molecular 

pathogenesis of GISTs and the developments in targeted 

therapy. 
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CLINICOPATHOLOGICAL FEATURES OF GISTS 

Most GISTs are well circumscribed tumors within the 

gastrointestinal wall. Stomach is the most common location 

for GISTs (40-60%), followed by jejunum and ileum (25-

30%), duodenum (5 %), colo-rectum (5-15%).1-4 Rarely, 

tumors arise in esophagus, and other extra-gastrointestinal 

sites, such as retroperitoneum, mesentery and omentum, have 

been reported.5-7 

 

Histologically, GISTs range from predominantly spindle cell 

to epithelioid cell type. A small subset GISTs have mixed 

cellular morphology. GISTs of the spindle cell type are 

composed of relatively uniform eosinophilic cells arranged in 

short fascicles or whorls (Figure 1A). Epithelioid cell type 

GISTs are composed of rounded cells with eosinophilic or 

clear cytoplasm (Figure 1B).8 GISTs of the mixed type may 

have areas of abrupt transition between spindle and 

epithelioid areas or complex intermingling of both cell types 

throughout. In general, GISTs tend to have bland cytological 

features. However, the morphological feature alone cannot 

fully predict the clinical behavior. Typical malignant 

presentations include recurrent at the resection site, 

metastasizing to liver and/or abdominal cavity. Lymph node 

and extra-abdominal involvements are uncommon.4 

 

Based on a long term follow up study, a current consensus 

was established which considers both tumor parameters 

(mitotic index, tumor size) and tumor anatomic location as 

risk predictors for malignant behavior (summarized in Table 

2).9 A revised NIH consensus criteria proposed inclusion of 

additional prognostic factors such as tumor rupture.10 The 7th 

edition of cancer staging manual published a TNM staging 

system for GISTs developed by American Joint Committee 

on Cancer (AJCC) and International Union Against Cancer 

Review 
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(UICC).11 However, the mitotic counting needs to be 

standardized. Moreover, whether to include GISTs with 

virtually no progression risk in the TNM system is still 

controversial.12 

 

The term of stromal tumor was introduced in 1983 by Mazur 

and Clark after revealing that these tumors are different from 

smooth muscle.13 Up to mid 1990’s, the immunophenotype 

of GISTs was not well characterized. Immunoreactivity for 

CD34 is positive in about 70% of the GISTs.14 The discovery 

of CD117 (c-KIT) expression in GIST provide a specific and 

sensitive immunohistochemical marker in differentiating 

GISTs from other gastrointestinal (GI) mesenchymal tumors. 

CD117 is seen in about 95% of the GISTs and most 

demonstrate strong and diffuse cytoplasmic expression 

(Figure 2B).15-16 Other expression patterns, such as 

perinuclear dot-like staining, or membranous staining, are 

also observed. In 30-40% of the cases, smooth muscle actin 

may also show positive staining. However, the entrapped 

smooth muscle cells from the gastrointestinal wall need to be 

excluded.  In rare occasion, S100 and desmin may also show 

focal and weak immune reactivity (Figures 2A-2D).8  

 

 

 
Figure 1. Histological features of GIST. 1A. spindle cell GIST with fascicles of uniform bland cells 

(40X). B. Epithelioid GIST. (40X)  

 

 
 

Figure 2. Typical morphological and immunohistochemical features of a gastric GIST (40X). A. H 

and E; B. CD117; C. Smooth muscle actin; D. S100.  
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About 5% KIT-negative GISTs may present as a diagnostic 

challenge. Several new markers discovered on tissue 

microarray were subsequently studied. The most well 

characterized one is Discovered on GIST-1 (DOG1).17 DOG1 

(also known as ANO1, TMEM16A) gene locates on 

chromosome 11 and encodes a calcium dependent chloride 

channel that has eight transmembrane domains.18-20 DOG1  

antibodies were developed and they are able to detect most 

KIT-positive GISTs as well as a subset of the KIT-negative 

GISTs, thus improves diagnostic accuracy, especially in KIT-

negative GISTs. Other markers such as protein kinase C-theta 

(PKC-) and carbonic anhydrase II (CAII) have also been 

investigated for their utility as potential diagnosis and 

prognosis markers.21-24 

  

 

 

Table 1. Immunohistochemical markers aid the differential diagnosis of GISTs and other 

gastrointestinal tract neoplasms. SMA: smooth muscle actin.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. Morphological and immunohistochemical features of a gastric leiomyoma (40X). A. H and 

E; B. CD117; C. Smooth muscle actin; D. Desmin. 

 

 

 

 

 GIST Leiomyoma/ 

leimyosarcoma 

Schwannoma Fibromatosis Melanoma 

CD117 + - - - + 

CD34 + - - - - 

SMA +/- + - +/- - 

Desmin - + - - - 

S100 - - + - + 

Other 

specific 

marker 

DOG1   β-catenin 

(nuclear) 

MelanA 

HMB45 
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MORPHOLOGICAL MIMICKERS OF GISTS  

GISTs have a spectrum of histological features and need to 

be distinguished from other GI mesenchymal tumors, such as 

leiomyoma, leiomyosarcoma, schwannoma, inflammatory 

myofibroblastic tumor, and fibromatosis. Occasionally, 

epithelioid GISTs may also mimic melanoma and sarcoma 

thus demanding differential diagnosis (Table 1). 

Leiomyomas in the GI tract commonly have a similar 

morphologic appearance as leiomyomas in other locations. 

They are usually small and well circumscribed and usually 

arise from the muscularis mucosae. Microscopically, 

leiomyomas are typically composed of fascicles of benign-

appearing spindle cells with rare nuclear atypia and mitoses. 

The cellularity is usually low. Tumor cells often have cigar 

shaped nuclei and abundant, eosinophilic cytoplasm (Figure 

3A). Leiomyosarcoma is a rare malignant smooth muscle cell 

tumor in the GI tract. The cells are mostly high grade with 

prominent nuclear atypia and mitoses.  

 

Immunohistochemically, both leiomyomas and 

leimyosarcomas are positive for smooth muscle actin and 

desmin, and are negative (or show very weak non-specific 

focal staining) for CD117 (Figures 3A-3D and data not 

shown).9,25 CD34 stain is negative for both leiomyomas and 

leimyosarcomas (data not shown).9,25 

 

Gastrointestinal schwannomas are rare tumors that occur in 

stomach or colon in older adults.9,26-27 They are relatively 

small intramural tumors that may be surrounded by 

peripheral lymphocytic cuff. The tumors are composed of 

bundles of spindle cells with low mitotic activity and focal 

atypia, and are often intermingled with fibrovascular septa. 

They often lack the nuclear palisading and Verocay bodies, 

which are typical of schwannoma in other locations. Tumor 

cells are S100 and GFAP positive, and SMA and CD117 

negative (Figures 4A-4D). 

 

 

 

 
 

Figure 4. Morphological and immunohistochemical features of a gastric schwannoma (40X). A. H and 

E; B. CD117; C. Smooth muscle actin; D. S100. 

 

 

Intra-abdominal inflammatory myofibroblastic tumors are 

often present as mesenteric masses in children and young 

adults. Histologically, these tumors are composed of spindled 

cells intermingled with lymphoplasmacytic infiltration and 

fibrotic streaks. The tumor cells are negative for CD117 and 

CD34, but can be positive for smooth muscle actin. 

Translocation involving ALK gene in chromosome 2p23 that 

activating the anaplastic lymphoma kinase (ALK) expression 

is the main pathogenetic event. Positive cytoplasmic ALK 

staining is regarded as an important diagnostic marker.28 

 

Fibromatosis in the GI tract occurs sporadically or in 

connection with Gardner syndrome. Histologically, the tumor 

is rich in collagen with mildly dilated prominent vessels. 

Immunohistochemical demonstration of nuclear beta-catenin 

positivity may be helpful in diagnosis.29 
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Hemangiopericytomas are intermediate sarcoma that 

primarily occurs in deep soft tissue particularly at pelvic 

retroperitoneum, but also in the limb as well as head and 

neck. Tumors consist of numerous vascular channels with 

plump endothelial nuclei and surrounding oval and spindled 

cells that resemble the cellular area of solitary fibrous tumor. 

They are usually immunoreactive for CD99 and CD34, and 

negative for CD117, smooth muscle actin and desmin 

(Figures 5A-5D).  

Melanoma in the GI tract is uncommon. They may exhibit 

spectrum of morphology and can be confused with high 

grade GISTs. The differential diagnosis is further 

complicated by positive CD117 staining in melanoma cells 

and rare S100 positivity in GIST cells. Thus, specific 

melanoma markers, such as HMB45 and Melan-A, are very 

important tools to aid in the differential diagnosis. 

 

 

 
 

Figure 5. Morphological and immunohistochemical features of a gastric hemangiopericytoma (40X). 

A. H and E; B. CD34; C. Smooth muscle actin; D. Desmin. 

 

 

MOLECULAR PATHOGENESIS OF GISTS 

GISTs are believed to be derived from the interstitial cells of 

Cajal or their progenitors. The interstitial cells of Cajal serve 

as pacemaker cells connecting myenteric plexus and smooth 

muscle of the GI tract and regulating GI peristalsis. Studies 

have shown that they express KIT and KIT ligand, stem-cell 

factor (SCF). KIT signaling pathway is essential for their 

differentiation and survival.30-31 c-KIT is a proto-oncogene 

which encodes a 145 KD membrane receptor tyrosine kinase. 

The KIT receptor can be detected by staining for CD117, a 

cell surface antigen on the extracellular domain of the KIT 

receptor. The ligand-receptor binding results in receptor 

homodimerization, which leads to activation of signal 

transduction pathways that regulate cellular proliferation and 

differentiation.32 In 1998, Hirota and colleagues first reported 

gain-of-function KIT mutations in human GISTs. 15 

Transgenic animal models showed that constitutively active 

Kit signal stimulate interstitial cell proliferation and resulting  

 

in GISTs development.33-34 Subsequently, numerous studies 

showed that over 80% GISTs have mutations in the KIT gene. 

Most common mutations are identified in the juxtamembrane 

domain encoded by exon 11 (about 65%). Other less 

common mutations are found in exon 9, 13, or 17, encoding 

extracellular domain and the two intracellular kinase domains, 

respectively.35-38  

 

Of the KIT negative GISTs, a subset harbor mutations in 

another receptor tyrosine kinase protein, platelet derived 

growth factor receptor α (PDGFRα). PDGFRα shares 

structure similarity with KIT and activates overlapping 

downstream targets.39-40 The mutations found in PDGFRα 

also correspond to the mutation hotspots in KIT, namely the 

juxtamembrane domain and kinase domains.41 DOG1 and 

PKC immune markers are positive in both types of GISTs.17, 

23 Consistent with the functional overlap, KIT and PDGFRα 
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mutations are mutually exclusive40, 42 In spite of molecular 

similarities, KIT and PDGFRα mutated GISTs present with 

some distinctive clinical and pathological features, including 

anatomic location, gene expression profile, malignant 

potential and responses to therapy. PDGFRα-mutant GISTs 

often display predilection for stomach site, epithelioid 

morphology, and variable CD117 expression.41-43 

 

Familial GISTs have also been reported.44 They harbor KIT 

or PDGFRα mutations which are inherited in an autosomal 

dominant pattern. Patients often develop multiple GISTs, and 

usually at younger age than patients with sporadic tumor. 

Tumor behavior varies from indolent to aggressive. 

Additional manifestations, such as cutaneous 

hyperpigmentation and mastocytosis, are often present.45-46 

 

About 10% GISTs have no detectable of either KIT or 

PDGFRα mutation. They are clinically indistinguishable 

from KIT- or PDGFRα-mutant GISTs. Many of them show 

positive KIT expression although the underlying mechanisms 

of KIT activation are unclear. Recent studies have revealed 

that these so called wild-type GISTs display various 

oncogenic mutations. The BRAF V600E mutation, which is 

common in papillary thyroid carcinoma and melanoma,47-48 is 

present in up to 13% of wild-type GISTs.49 Mutations in the 

succinate dehydrogenase (SDH) complex of respiratory chain 

complex II have also been identified in wild-type GISTs. 

Germline mutations in SDH subunits (SDHB, SDHC or 

SDHD) related to Carney-Stratakis syndrome, which increase 

the risk of GIST as well as paraganglioma and 

pheochromocytoma.50 Multiple signaling molecules, 

including hypoxia-inducible factor 1α (HIF1α), vascular 

endothelial growth factor (VEGF), MAPK and PI3K-AKT 

pathways may be implicated; however, the tumorigenic 

mechanisms of SDH loss-of-function in GISTs remain 

obscure.  

 

Individuals with neurofibromatosis type I (NF1) have much 

higher risk to develop one or more GISTs.66–70 The syndrome 

results from germline mutation of NF1 gene, which encodes 

Neurofinromin, a GTPase-activating protein. NF1-associated 

GISTs are often multi focal and most arise in the small 

intestine. Most of the tumors do not harbor KIT or PDGFRα 

mutations, however, majority show positive CD117 

immunoreactivity.  

 

Approximately 1–2% of all GISTs arise in pediatric 

population. Unlike GISTs in adults, they are rarely positive 

for KIT or PDGFRα mutations and display a different gene 

expression signature from adult-type GISTs.51-52 In addition, 

Carney’s triad, a non-heritable syndrome presents with 

coexistence of pediatric-type GISTs with pulmonary 

chondromas and/or paragangliomas.53 However, the gene(s) 

for this rare syndrome remain elusive.  

 

Table 2. Risk assessment of primary GISTs based on tumor parameters and tumor location. Adapted from 

Miettinen and Lasota.9  HPF: high power field. * denotes small case numbers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PROGNOSIS AND TYROSINE KINASE INHIBITOR 

THERAPY 

Long term clinical follow-up studies indicated that virtually 

all GISTs have malignant potential and a guideline for 

assessing progressing risk was proposed.52, 54 These criteria 

are recommended by National Comprehensive Cancer 

Network (NCCN) and College of American Pathologist.55 

The recent advances in dissecting the molecular natures of 

the GISTs also revealed correlation of specific mutations and 

tumor behavior. For example, several mutations in exon 9 

have been associated with aggressive phenotype.56-59  

 

Prior to the tyrosine kinase inhibitor (TKI) therapy era, 

surgical resection was the main treatment modality for 

localized tumors while conventional chemotherapy was the 

management option for tumors of advanced stage. The 

response rate to conventional chemotherapy was low and the 

typical median survival length for tumors of advanced stage 

was 18-24 months.4 The Imatinib treatment was first 

conducted on a patient with metastatic tumor in 2000 with 

dramatic response.60 This successful outcome led to 

multicenter clinical trials. A phase II clinical trial on 147 

patients with unresectable or metastatic GISTs had 54% 

patients with partial response and 28% patients with stable 

disease.61  Long term follow up revealed that median overall 

survival was 58 months, greatly improved from that in the 

pre-TKI therapy period.62 Currently, Imatinib and Sunitinib 

are FDA approved first and second line treatment of 

advanced or metastatic disease. They are small molecules 

which competitively bind to the ATP-binding pocket of KIT 

and PDGFRα, inhibiting autophosphorylation and activation, 

resulting in inhibition of downstream signaling transduction. 

Tumor parameters Disease progression risk based on tumor location 

Mitotic index Tumor size Stomach Non-stomach  

≤5/50 HPF 

≤2 cm None None 

2-5 cm Very low Low 

5-10 cm Low Moderate 

>10 cm Moderate High 

>5/50 HPF 

≤2 cm None * High* 

2-5 cm Moderate High 

5-10 cm High High 

>10 cm High High 
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Imatinib binds to amino acid residues within the ATP-

binding pocket as well as the activation loop, whereas 

Sunitinib interacts with different amino acid residues in the 

ATP-binding pocket.63 In addition, Sunitinib also possesses 

activity against vascular endothelial growth factor receptors 

(VEGF) and thus has anti-angiogenic properties.64  

 

Surgery remains to be the standard management for 

resectable GISTs with no evidence of metastasis. For patients 

with localized GISTs but are at intermediate to high risk of 

relapse, adjuvant Imatinib treatment can delay recurrence. In 

early 2012, FDA approved the adjuvant use of Imatinib in 

light of positive results from clinical trials.65 Preoperative 

Imatinib neoadjuvant treatment is also an emerging 

management option.66 Two phase III trials assessed the 

efficacy and side effects of Imatinib at daily dosage of 400 

mg or 800 mg and showed that both dosage achieved similar 

responses. However, the 800 mg dose was associated with 

more side effects. Thus the 400 mg is the suggested initial 

therapeutic dose. It can be increased to 800 mg if the tumor 

progresses. GISTs with exon 11 mutations demonstrated the 

most favorable response to 400 mg Imatinib treatment, 

compared with tumors with exon 9 mutations or tumors 

lacking KIT and PDGFRα mutations.67-69 One phase III 

clinical trial showed that tumors harbor exon 9 mutation may 

benefit from initial 800 mg treatment.70 KIT exon 9 mutation 

and wild-type GISTs display better Sunitinib responses than 

tumors harbor KIT exon 11 mutations. However, the most 

common PDGFRα mutant, exon 18 D842V, is highly 

resistant to both Imatinib and Sunitinib.71 Thus, in addition to 

tumor size, location and mitotic index, incorporating the 

mutational analysis will enhance the accurate assessment of 

prognosis.  

 

Despite the initial responses, nearly 50% of GISTs treated 

with Imatinib therapy develop resistance in the first 2 years. 

Resistance is categorized as either primary resistance or 

secondary resistance. Primary resistance to Imatinib is 

defined as lack of therapeutic responses within the first 6 

months of treatment and is commonly associated with 

patients with KIT exon 9, PDGFRα exon 18, and wild-type 

KIT genotypes. Secondary resistance is defined by initial 

responses for a period of 6 months on Imatinib followed by 

disease progression. New mutations developed in KIT or 

PDGFRα are considered as the underlying mechanisms.64,72 

A group of second-generation tyrosine kinase inhibitors, such 

as Sorafenib, Dasatinib and Nilotinib, are currently in phase 

II and phase III clinical trials. Drugs against other targets are 

also in development.44 

 

SUMMARY  

Great advances have been made in understanding the 

molecular pathogenesis of GISTs. Current NCCN guideline 

recommend KIT mutational analysis on metastatic and 

advanced diseases, but only on selected primary cases, such 

as KIT-negative GISTs.73 The mutational status of GISTs 

may present as another useful factor in assessing tumor 

prognosis. Challenges remain for elucidating the molecular 

nature of the wild type and syndrome associated GISTs. 

Moreover, the high percentage drug resistance rate demand 

development in new generation of tyrosine-kinase inhibitors. 

Researches on investigating other molecular mechanisms that 

lead to tumor progression may provide alternative therapeutic 

targets and modalities. 
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