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Abstract 
In humans, telomeres are repeating strings of TTAGGG 

sequences that protect chromosomal ends and maintain 

genomic stability. Telomere length is considered a critical 

marker of biological aging because telomeric DNA 

progressively shortens in dividing somatic cells and 

contributes to cell senescence, apoptosis, or neoplastic 

transformation. Recent studies have associated telomere 

shortening with insulin resistance and various age-

related pathological conditions.  In this review, we 

summarized the current available evidence concerning 

the role of telomere length in the development of insulin 

resistance.  [N A J Med Sci. 2010;3(2):57-60.] 
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Telomeres are regions of highly repetitive TTAGGG DNA 

sequences extending over several kilobases at the ends of 

chromosomes in eukaryotes whose complete biological 

functions remain unclear. The gradual loss of telomeric 

DNA in dividing somatic cells is known to contribute to 

senescence, apoptosis, or neoplastic transformation,1 

indicating the critical importance of telomere length as a 

biomarker for somatic cell aging.2 It is now increasingly 

recognized  that  telomere  shortening  also contributes to the 

pathogenesis of several age-dependent complex disorders,1,3-

27  including insulin resistance.3,11,14,28-31  
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Insulin resistance is a state in which a given concentration of 

insulin produces a less-than-expected biological effect on 

target tissues that do not respond properly to insulin action. 

High plasma levels of insulin and glucose due to insulin 

resistance are believed to play a major pathogenic role in the 

development of metabolic syndrome, type 2 diabetes, and 

heart diseases.  Aging and obesity have long been 

recognized as important causes of insulin resistance, and 

both are associated with a rise in systemic inflammation,32,33 

and oxidative stress.34,35 Inflammation enhances the turnover 

rate of leukocytes, and oxidative stress heightens the loss of 

telomeric repeats per cell replication,32 therefore oxidative 

stress and inflammation may accelerate telomere erosion in 

leukocytes. Cumulative burden of oxidative stress is 

considered the key element in age-related diseases,3 

including insulin resistance, and is considered a major 

determinant of lifespan. Oxidative stress also appears to be a 

major regulatory factor affecting the loss of telomeres36 by 

increasing telomeric erosion with each replication,37,38 

thereby contributing to overall telomere shortening.39 In 

vitro, von Zglinicki and colleagues have established that 

oxygen free radicals are a major cause of telomere 

shortening and that reduction in oxidative stress reduces the 

rate of telomere shortening.40-44 In vivo, leukocyte telomere 

length is often used to represent an individual’s telomere 

length at birth and telomere attrition thereafter.3 Presumably, 

this attrition is determined not only by the replicative history 

of leukocytes, but also the cumulative oxidative stress in 

progenitor cells.3  Thus, leukocyte telomere length could be 

regarded as a biological record of the cumulative burden of 

inflammation and oxidative stress over an individual’s life 

span.45  

 

Additionally, supporting data are now emerging to indicate a 

possible link between oxidative stress and telomere 

shortening in vascular cells.46  Some studies have related 

changes in telomere length during growth and aging to 

changes in biomarkers of endothelial damage47 and other 

bio-precursors of atherosclerosis like hyperhomo-
cysteimia.36,48  By inducing senescence, telomere erosion 

may also directly contribute to progressive endothelial 

dysfunction and atherosclerosis.49 In practice, leukocyte 

telomere length could be used as a record representing  the 

cumulative burden of exposures to oxidative stress and/or 

insulin resistance that pre-date the leukocyte collection.32 In 

several cross-sectional analyses of human populations, 

leukocyte telomere length has been inversely associated with 

insulin resistance,3,11,14,28-31,50 serum leptin, and body mass 
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index (BMI),9 In the only prospective cohort available, 

accelerated leukocyte telomere attrition, was also associated 

with an increase  in insulin resistance and BMI in a 

longitudinal study.31 

 

The homeostasis model assessment (HOMA-IR) is most 

commonly used to quantify insulin resistance in population 

studies.51 HOMA-IR, the product of basal glucose (mmol/L) 

and insulin levels (μU/mL) divided by 22.5, is a well-

established simple biomarker for estimating the balance 

between hepatic glucose output and basal insulin 

secretion.52,53  To date, there has been a total of eight cross-

sectional studies that directly investigate the relation 

between telomere length and HOMA-IR (Table 1).  

 

 

Table 1. Available Epidemiologic studies relating telomere length to insulin resistance in the published literatures. 

 

Year Author Size Race Cell Type Results 

2005 Adaikalakotesw

ari et al11  

40 non-diabetic 

controls 

Asian Indian Leucocyte TRF length negatively correlated with 

insulin resistance (HOMA-IR)  

where r = -0.4, p = 0.01 

2005 Gardner et al31  48 from two cross-

sectional 

cardiovascular 

screenings of the 

Bogalusa Heart 

Study 

22 white males, 

28 white 

females, 8 black 

males, and 12 

black females 

WBC relative changes in telomere length were 

correlated with the HOMA-IR  

(r = -0.531, P < 0.001) 

2006 Dimissie et al3 

 

327 from the 

Offspring cohort of 

the Framingham 

Heart Study 

Caucasian men leukocyte age-adjusted TRF length was inversely 

correlated with the HOMA-IR (r = -0.16, 

P = 0.007) 

2006 Sampson et al14 21 type 2 diabetic 

cases and 29 matched 

control 

Caucasian males monocytes Telomere length was unrelated to insulin 

resistance (HOMA-IR, r = 0.08, p = 0.2) 

2006 Nakajima et al50 44 patients with 

nonalcoholic fatty 

liver disease 

Japanese Asian liver 

tissue 

HOMA-IR were significantly higher in 

low telomere length group (high vs low = 

2.2 vs 3.7, p = 0.019) 

2006 Aviv et al30  1517 Caucasian 

female twins from 

the St. Thomas’ 

Adult Twin Registry 

Caucasian leukocyte Telomere length was inversely associated 

with HOMA-IR in pre-menopausal 

women (r = -0.149, p < 0.001) 

2009 Barbieri et al29 476 healthy, 

unrelated Caucasians 

(208 men and 268 

women), aged 16-
104 years 

Caucasian (Italy) leukocyte LTL was correlated negatively with 

HOMA-IR (r = -0.123, P = 0.023) in 

individuals younger than 85 years. 

However, not significant after age-

adjustment. 

2010 Al-Attas et al28 69 boys and 79 girls, 

aged 5-12 years 

Arabian leukocyte telomere length was not associated with 

insulin resistance 

 

 

The majority of studies found that leukocyte telomere 

lengths were shorter in participants with insulin resistance 

and that telomere lengths were inversely associated with 

HOMA-IR in healthy participants. In a cross-sectional study 

of Asian Indian, Adaikalakoteswari et al11 observed that 

telomere length was negatively correlated with HOMA-IR in 

40 non-diabetic controls (r = -0.4, p = 0.01). Demissie et al3 

measured the leukocyte terminal restriction fragment length 

of 327 Caucasian males (mean age of 62.2 years) from the 

Framingham Heart Study Offspring Cohort and observed 

that age-adjusted TRF length was inversely correlated with 

the HOMA-IR (r = –0.16, p = 0.007) and urinary 8-epi-

PGF2 (r = –0.16, p = 0.005), an index of systemic oxidative 

stress. Similar findings were also reported in another cross-

sectional study of apparently healthy Italians29 aged < 85 

years (r = –0.149, p < 0.001), although t the association was 

no longer statistically significant after the adjustment of age. 

However, no relation was found between insulin resistance 

and telomere length in Arab youth (aged 5-12 years).14,28 

Interestingly, there seems to be a sex-specific phenomenon 

regarding the telomere-HOMA-IR relation where the impact 

of menopause appears quite significant on both insulin 

resistance and telomere length in women. To evaluate the 

impact of menopause on the telomere-HOMA-IR relation, 

Aviv et al30 studied 1,517 Caucasian female twins aged 18-

79 who were enrolled in UK’s adult Twin Registry, and 

observed that  mean telomere length was 187 bp longer in 

low HOMA-IR pre-menopausal women (age  50) compared 
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to high HOMA-IR women, but 40bp shorter in low HOMA-

IR postmenopausal women (age > 50).30 Although these 

differences did not reach statistical significance at the 

conventional =0.05 levels, the overall trend appeared to 

support the notion that menopausal status modified the 

association between telomere length and insulin resistance in 

women. In the only prospective study of Bogalusa Heart 

Study that analyzed changes in telomere length and changes 

in HOMA-IR,31 Gardner and colleagues found that the 

relative changes in telomere lengths of the 48 individuals 

who participated in two cross-sectional screenings (1988-

1991 and 2000-2001) were correlated with yearly change of 

the HOMA-IR between the two screenings (r=-0.531, 

p<0.001). These correlations were also independent of the 

relative change in BMI and other covariates.   

 

In conclusion, available evidence, albeit limited, indicates 

that telomere length may be inversely associated with insulin 

resistance. The mechanisms that are potentially responsible 

for such an observation remain largely unknown but are 

thought to reflect the cumulative oxidative stress and chronic 

inflammation. Large and well-characterized prospective 

studies are needed to clarify the role of telomere biology in 

the development of insulin resistance in humans.  
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