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Current clinical cytogenomics laboratory uses array comparative genomic hybridization (aCGH) or single 

nucleotide polymorphism (SNP) chip as first-tier test supplemented with routine karyotyping and 

fluorescent in situ hybridization (FISH) for patients with developmental delay (DD), intellectual disability 

(ID), multiple congenital anomalies (MCA) and autistic spectrum disorders (ASD). A spectrum of 

cytogenomic abnormalities including numerical chromosomal abnormalities, unbalanced and balanced 

structural and cryptic rearrangements, and recurrent genomic disorders have been detected 10~20% of 

patients with DD/ID/MCA/ASD and collectively present in approximately 0.8% of a general population. 

The characterization of genomic coordinates and gene contents for these abnormalities has enabled 

accurate mapping of candidate genes and correlating genotypes with phenotypes and thus more 

informative genetic counseling. Future application of WGS will expand this spectrum of cytogenomic 

abnormalities by including complex and cryptic structural variants. Further delineation of molecular 

mechanisms of these cytogenomic abnormalities and development of novel therapeutic approaches will 

ultimately lead to disease-specific personalized management and precision treatment. 
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INTRODUCTION 

In the field of medical genetics, technologic innovations have 

been the driving force in improving the efficacy of genetic 

diagnosis and in expanding the spectrum of disease-causing 

mutations.
1
 Clinical cytogenetics, as an integral part of 

medical genetics, has been routinely applied to the study of 

human chromosomal abnormalities and their correlated 

disease manifestations from patients with developmental 

delay (DD), intellectual disability (ID), multiple congenital 

anomalies (MCA) and autistic spectrum disorders (ASD). A 

conventional cytogenetics laboratory detects numerical and 

structural chromosomal abnormalities using cell-based 

Giemsa-stained banding pattern (G-band) on metaphase 

chromosomes and fluorescent in situ hybridization (FISH) 

analysis on metaphase chromosomes or interphase 

chromatin. In the past decade, the first-tier application of 

DNA-based oligonucleotide array comparative genomic 

hybridization (aCGH) or single nucleotide polymorphism 

(SNP) chip analysis has enabled the detection of pathogenic 

copy number variants (CNVs) and thus evolved clinical 

cytogenetics to cytogenomics.
2,3

 Curated clinical resources 

for evidence-based interpretation of cytogenomic findings 

have been established.
4
 This review outlines the analytical 

validities of key cytogenomic technologies, highlights the 

diagnostic efficacy for the spectrum of cytogenomic 

abnormalities, and discusses the potential applications of next 

generation whole genome sequencing (WGS). The 

continuous progress from clinical cytogenomic service has 

resulted in rational disease classification and better genetic 

counseling and concurrently promoted further basic research 

to dissect the molecular mechanisms and to develop 

therapeutic interventions for patients affected by 

cytogenomic abnormalities. 

 

KEY TECHNOLOGIES IN A CLINICAL CYTO-

GENOMIC LABORATORY  

In 1956, Tjio and Levan correctly described that a normal 

human metaphase contains 46 chromosomes.
5
 This 

observation allowed the identification of numerical 

chromosomal abnormalities like trisomy 21 for Down 

syndrome, 45,X for Turner syndrome, 47,XXY for 

Klinefelter syndrome, trisomy 13 for Patau syndrome, and 

trisomy 18 for Edwards syndrome.
6-10

 In 1968, Caspersson et 

al. reported differentiate Quinacrine staining of chromosomes 

and prompted the development of various chromosome 

banding techniques.
11

 Giemsa staining on trypsin-treated 

chromosome spreads presents unique G-band ‘barcodes’ for 
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each pair of chromosomes under a microscope. A normal 

human G-band ideogram was created as a standard for 

accurate grouping, numbering and pairing of human 

chromosomes based on their size, centromere position, 

defined regions and bands; this organized chromosomal 

profile of an individual is referred to as a karyotype.
12

 

Despite an effective tool to detect numerical and structural 

chromosomal abnormalities, the banding method has two 

obvious technical limitations: the requirement of viable 

tissues for setting up cell culture to capture metaphases and 

the low analytical resolution of chromosomal G-bands. The 

size of a human genome is 3,000 Mb (megabases) and 

estimated total number of protein-coding genes is about 

20,000. So the average size of a chromosome G-band in a 

medium 500-band level is about 6 Mb and contains 40 

coding genes. The lack of genomic mapping for involved 

gene content of many detected chromosomal abnormalities 

had been the major obstacles for accurate karyotype-

phenotype correlation and candidate gene identification.   

 

In 1982, FISH technology using labeled DNA probes 

hybridized onto metaphase chromosomes was developed to 

map genes onto specific chromosomal G-band regions.
13

 This 

gene mapping tool was immediately applies to cytogenetic 

diagnosis. FISH on metaphase chromosomes, using labeled 

DNA probes in the size of 100-800 kilobase (Kb), has 

enhanced the analytical resolution and allowed accurate 

diagnosis of submicroscopic genomic disorders (also termed 

contiguous gene syndromes or microdeletion syndromes), 

such as DiGeorge syndrome (OMIM#188400) by a deletion 

at 22q11.2, Prader-Willi syndrome (OMIM#176270) and 

Angelman syndrome (OMIM#105830) by a deletion at 

15q11.2. FISH can also be performed directly on interphase 

nuclei, which overcame the limitation of cell culture and 

extended its diagnostic application toward rapid screening of 

chromosomal and genomic abnormalities. Multiplex FISH 

panels with differentially labeled probes have been 

developed for prenatal screening of common aneuploidies 

involving chromosomes X, Y, 13, 18 and 21 and for 

postnatal detection of cryptic subtelomeric 

rearrangements.
14,15

 The abnormality detection rate is 3.7% 

by conventional karyotyping for large numerical and 

structural chromosomal abnormalities and up to 6.8% when 

combined with FISH analysis for targeted genomic disorders 

and subtelomeric rearrangements.
16

 

 

In 1992, to overcome frequent cell culture failure and poor 

metaphase quality in karyotyping solid tumor samples, 

Kallioniemi et al. developed comparative genomic 

hybridization (CGH) using differently labeled test and 

control DNAs co-hybridized onto normal metaphase 

chromosomes to measure copy number changes.
17

 In 1995, 

Schena et al. developed a microarray-based technology to 

quantitatively monitor multiple gene expression.
18

 A hybrid 

of these CGH and microarray technologies formed the novel 

aCGH technology for a high resolution analysis of copy 

number changes through the genome. A decade later, high 

density oligonucleotide microarrays or SNP chips following 

industrial standards along with user-friendly analytical 

software packages were developed by several companies. 

These genomic technologies filled the gap between the Mb-

range chromosome G-bands and Kb-level gene structure and 

were quickly validated for diagnosis of CNVs.
19

 CNVs are 

defined as gains or losses of genomic materials larger than 1 

Kb in size and they present as benign polymorphic in 

approximately 12% of the genome from normal human 

populations.
20

 Given the analytical resolution of 50~300 Kb 

for a routine aCGH, the clinical sensitivity is close to 100% 

and the clinical specificity is estimated to be 99.4% for 

detecting a reference set of recurrent microdeletions and 

microduplications ranging from 500 Kb-3.0 Mb.
21

 A multi-

center comparison of 1,499 patients using the same 

oligonucleotide platform (Agilent 44K) showed a 12% 

abnormality detection rate, and about 53% of the abnormal 

findings are less than 5 Mb and thus beyond the analytical 

resolution of routine karyotyping.
22

 Although cytogenetic 

testing has gradually become a supplemental or confirmatory 

procedure, karyotyping is still the gold standard to detect 

numerical chromosomal abnormalities and structural 

rearrangements and FISH is also the ‘cell-based’ method of 

choice to determine mosaic patterns. Approximately 45% of 

genomic imbalances are larger than 3-5 Mb and could be 

confirmed by high resolution G-banding; most recurrent 

genomic disorders, subtelomeric rearrangements and mosaic 

patterns can be readily confirmed by clinically-validated 

commercial FISH probes. 

 

An international system for human cytogenetic nomenclature 

(ISCN) was first introduced in 1978 and has been 

continuously updated to the current 2013 version for a 

systematic documentation of chromosomal and genomic 

abnormalities.
12

 The analytical validities and technical 

capacity of chromosome, FISH and aCGH are summarized in 

Table 1. Recently, WGS has been used to study balanced 

chromosomal rearrangements and hidden genomic 

rearrangements.
23

 Nomenclature for describing chromosomal 

and genomic rearrangements in a nucleotide level has been 

suggested and a systematic approach to the reporting of 

medically relevant WGS findings has been proposed.
24,25

 

 

THE SPECTRUM OF CYTOGENOMIC 

ABNORMALITIES  
The prevalence of ID/DD and ASD are reported to be 1~3% 

and 0.67%, respectively.
26

 Other common neurodevelopment 

disorders including speech and language delay, schizophrenia 

and epilepsy are also subjected for cytogenomic testing. The 

diagnostic yield by an integrated cytogenomic analysis of 

aCGH, FISH and karyotype is 10-20%.
2,22

 The diagnostic 

yield could be varied by the criteria of patient referrals and 

the resolution of genomic analysis. For example, of the 1,354 

consecutive pediatric patients analyzed by 44K and 180K 

Agilent oligonucleotide aCGH, pathogenic abnormalities 

were detected in 176 patients (a 13% diagnostic yield). These 

abnormalities were classified into chromosomal and cryptic 

structural abnormalities seen in 95 patients (54%), recurrent 

genomic disorders in 66 patients (37.5%), and common 

aneuploidies in 15 patients (8.5%).
27
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Table 1. Analytical Validities and Diagnostic Capacity of Cytogenomic Analyses.     

    

    Analytical Validity*       Types of abnormalities detected** 
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Cell Based G-

banding                       3.70% ISCN1978/1981 

Routine (400-550 

bands)   5 ~ 7 Mb     + + + - - - >6%   ISCN1985/1991 

High Resolution 

(550-850 bands)   3 ~ 5 Mb     + + + - - - >6%     

Cell Based FISH   

 

      

 

  

 

      6.80% ISCN1995 

     Gene/locus-specific   100-800 Kb ~98% ~98% + + + + - - >3~5%     

     Regional specific 

(cen/subtel)   >100 Kb ~98% ~98% + + + + - - >3~5%     

DNA-based aCGH 

(Agilent)   

 

      

 

  

 

      10-20% ISCN2005 

     CGH 44K 68 Kb 400~500 Kb >99% >99% + - + + - - >20%   ISCN2009/2013 

     CGH 180K 17 Kb 100~120 Kb >99% >99% + - + + - - >20%     

     CGH+SNP 180K 17 Kb 100~120 Kb >99% >99% + - + + + - >20%     

     CGH+SNP 400K 7.5 Kb 40~50 Kb >99% >99% + - + + + + >20%     

 
* Sensitivity and specificity of FISH based on laboratory validation and of aCGH based on ref. #19       

** Chr = chromosome, num = numerical, bal = balanced, unbal = unbalanced, Abn = abnormalities; CNV = copy number variant, UPD = uniparent disomy, ROH = 

Region of homoygosity  

+ detectable, - undetectable; percentage of mosaic detection based on chromosome analysis of 50 metaphases, FISH assay of 200 cell and ref#32 for aCGH. 

 

 

Table 2.  The Spectrum of Cytogenomic Abnormalities and Their incidences.* 

 

Type of Abnormality Commonly Seen Abnormalities Estimated Incidence 

Numerical Abnormality     

Sex Chromosome Aneuploidy     

--Male  47,XXY; 47,XYY; other X/Y aneuploidy 1/360 male births 

--Female 45,X; 47,XXX; other X aneuploidy 1/580 female births 

Autosomal Aneuploidy 47,+21; 47,+18; 47,+13; other aneuploidy 1/700 

Total   1/260 

Structural Abnormality      

  Unbalanced Rearrangements Deletions, duplications, ring, marker chromosomes, etc. 1/1,600 

  Balanced rearrangements Robertsonian, reciprocal translocation, inversion, etc.  1/490 

Total    1/375 

Genomic Disorders microdeletion/duplication at 22q11.2, 16p11.2, 1q21.1,    

  15q13, 7q11.23, 15q11-q13, 17q21.31, 16p13.11, etc. 1/550 

All Cytogenomic Abnormalities 1/120 

 

*The incidences for numerical and structural abnormalities from ref#28, and genomic disorders from ref#1  

 

The spectrum of cytogenomic abnormalities ranges from 

numerical chromosomal abnormalities, unbalanced and 

balanced structural chromosomal abnormalities, 

submicroscopic recurrent genomic disorders, to cryptic or 

intragenic copy number changes. From a large newborn 

survey, the overall incidence of male sex chromosomal 

abnormalities (47,XXY for Klinefelter syndrome, 47,XYY, 

and other X or Y aneuploidy) is 1/360 male births and of 

female sex chromosomal abnormalities (45,X for Turner 

syndrome, 47,XXX, and other X aneuploidy) is 1/580 female 



 

 

 
North American Journal of Medicine and Science                                   Oct 2015 Vol 8 No.4                                                                                       175 
 

births. The most commonly seen numerical chromosomal 

abnormality is Down syndrome (trisomy 21) with an 

incidence of 1/800. The overall incidence for autosomal 

numerical abnormalities (trisomy 21, 18, 13 and others) is 

1/700. The most commonly seen balanced rearrangement is 

Robertsonian translocation with an incidence of 1/1100. 

There are many types of unbalanced rearrangements 

including deletions, duplications, ring chromosomes and 

supernumerary marker chromosomes. The overall incidence 

of unbalanced chromosomal rearrangements is 1/1600 and of 

balanced rearrangements is 1/490.
28

 The most commonly 

seen genomic disorder is DiGeorge syndrome (22q11.2 

deletion) with an incidence of 1/8000. The overall incidence 

of frequently detected 14 genomic disorders is estimated to 

be 1/550.
1
 Table 2 lists the spectrum of cytogenomic 

abnormalities and their incidences. The overall incidence for 

all cytogenomic abnormalities is about 1/120 in a general 

population.  

 

Chromosomal and Cryptic Structural Abnormalities 

With its much higher analytical resolution than chromosome 

G-banding, aCGH analysis can delineate the genomic 

coordinates and gene contents for almost all chromosomally 

visible numerical and structural imbalances. This genomic 

information facilitates fine mapping of critical regions or 

intervals containing candidate dosage-sensitive genes 

through subtractive comparison of overlapped deletions and 

duplications. For example, cytogenomic mapping defined an 

11q14.1-q23.2 interstitial deletion from a complex 

chromosomal rearrangement and reveal FZD4 

haploinsufficiency as cause for exudative vitroretinopathy.
29

 

Similar approach has been applied to other interstitial 

deletions, duplication and subtelomeric rearrangements in 

autosomes and sex chromosomes.
30-33

 This integrated 

cytogenomic analysis has also been used in prenatal 

diagnosis to define genomic imbalances from structural 

chromosomal abnormalities and thus provide accurate gene 

content, phenotype predication and risk estimation for 

prenatal genetic counseling.
34,35

      

 

Cytogenomic analysis can also resolve the genomic 

structures, mutagenesis mechanisms and mitotic or meiotic 

behaviors from puzzling chromosomal structural 

abnormalities like ring chromosomes or supernumerary 

marker chromosomes. For example, ring chromosome 20 

syndrome is a rare chromosomal disorder characterized by 

refractory epilepsy with seizures in wakefulness and sleep, 

behavior problems, and mild to severe cognitive impairment. 

The aCGH analysis revealed two distinct groups of patients: 

75% were mosaic for the r(20) and a normal cell line with no 

detectable deletions or duplications of chromosome 20 in 

either cell line, and 25% had non-mosaic ring chromosomes 

with a deletion at one or both ends of the chromosome. The 

age of onset of seizures inversely correlated with the 

percentage of cells containing the ring chromosome.
36

 

Complex interstitial duplication and distal deletion was 

detected in a ring chromosome 13.
37

 Unique structural 

rearrangement and distinct mitotic behavior were observed in 

two case of ring chromosome 21.
38

 Clinical classification by 

different type of ring chromosome was proposed.
36,38

 For 

supernumerary marker chromosomes, aCGH analysis has 

proved very effective in defining the breakpoints, unexpected 

structural complexity, copy number changes, and gene 

content.
39,40

 Another interesting observation from aCGH 

applications on two large series is the detection of low-level 

mosaicism of numerical and structural abnormalities in 

approximately 0.5% of patients referred for DD/ID/MCA.
41,42

 

It was suggested that the DNA extracted from the white 

blood cells can reflect mosaic pattern more accurately than 

culture stimulated lymphocytes. A cytogenomic approach 

combining cell-based methods of FISH on direct prepared 

interphase cells and extensive karyotyping on metaphase 

cells with DNA-based estimation from aCGH log2 ratio or 

SNP pattern was proposed for dissecting mosaic patterns.
38

  

 

Hidden genomic aberrations in complex chromosomal 

rearrangements or apparently balanced translocations were 

also detected by aCGH.
37,43

 Of patients presenting abnormal 

phenotypes and an apparently balanced translocation, 

approximately 29-40% has cryptic breakpoint-associated or 

unrelated imbalances of paternal origin.
44,45

 Several disease-

causing mechanisms induced by a balanced translocation 

including loss of function by gene disruption, gain of 

function by gene fusion and aberrant expression by positional 

effect, have been demonstrated. For example, Cacciagli et al. 

detected a de novo balanced translocation t(10;13)(p12;q12) 

in a patient with severe speech delay and major hypotonia.
46

 

This translocation disrupted the ATP8A2 gene. This gene is 

highly expressed in the brain, suggesting the patient’s mental 

disability is likely due to the halpoinsufficiency of the 

ATPA2 gene. Brownstein et al. reported a case with over-

expression of the α-Klotho gene induced by a balanced 

translocation t(9;13)(q21.13;q13.1) and established the 

association α-Klotho over-expression with 

hypophosphatemic rickets and hyperparathyroidism.
47

 

Application of paired-end genomic sequencing or breakpoint-

targeted capture sequencing on five ASD/DD patients 

carrying a balanced rearrangement revealed unexpected 

sequence complexity as an underlying feature of karyotyping 

balanced alterations.
48

 Cost-effective diagnostic sequencing 

analysis for balanced rearrangements detected in patients 

with ID/DD/ASD should be implemented in the near future. 

 

Recurrent Genomic Disorders 

Genomic disorders refer to microdeletions and 

microduplications mediated by non-allelic homologous 

recombination (NAHR) within regional low copy repeats 

(LCRs). A dozen of recurrent genomic disorders such as 

DiGeorge syndrome caused by a deletion at 22q11.2, 

Williams-Beuren syndrome  (OMIM#194050) by a deletion 

of 7q11.23, Prader-Willi syndrome and Angelman syndrome 

by a deletion at 15q11.2 have been recognized clinically and 

routinely diagnosed by FISH testing. The application of 

genomic analysis enables not only more accurate diagnosis of 

these previously recognized genomic disorders but also the 

detection of many novel recurrent genomic disorders. In 

2006, the first genomic disorder identified by aCGH is a 500 

Kb microdeletion at 17q21.31 containing the MAPT gene 
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(microtubular associated protein tau) from patients with a 

clearly recognizable ID, hypotonia and a characteristic 

face.
49,50

 This later termed Koolen syndrome 

(OMIM#610443) is caused either by heterozygous mutation 

in the KANSL1 gene or a 17q21.31 deletion. The KANSL1 

gene encodes a nuclear protein that plays a role in chromatin 

modification. It is a member of histone acetyltransferase 

(HAT) complex. The reciprocal 17q21.31 microduplication 

syndrome (OMIM#613533) manifests some degree of 

psychomotor retardation, poor social interaction, and 

communication difficulties reminiscent of ASD.
51

 Since then, 

many genomic disorders have been reported. The aCGH 

analysis on 15,767 pediatric patients with ID/DD revealed 

that about 14.2% of them are caused by pathogenic CNVs 

over 400Kb, and approximately 60% of these pathogenic 

CNVs are within 45 known genomic disorder regions.
52

 A 

study of human populations for the polymorphic inversions at 

17q21.31 observed that the H2 haplotype occurred at the 

highest frequencies in South Asian and Southern Europe; this 

H2 haplotype is susceptible to de novo deletions that lead to 

developmental delay and learning difficulties.
53

 Population 

genetic studies for genomic disorders of other loci could 

define predisposing genomic structures and recurrence risk 

for different ethnic groups at different geographic regions.  

 

The microdeletion and microduplication of the same genomic 

locus offer an opportunity to study dosage-sensitive genes, 

especially for the opposite phenotypes from haploinsufficient 

and triple-sensitive genes. Comparison of clinical features of 

7q11.23 microdeletion for Williams syndrome and reciprocal 

microduplication syndrome (OMIM#609757) noted different 

neurologic and behavior problems. The 7q11.23 

microdeletion shows relative strength in expressive language 

and excessive sociability. To the contrary, the 7q11.23 

microduplication has speech and language delay, deficit of 

social interaction and aggressive behavior. The FZD9, 

LIMK1, CLIP2 and GTF21RD1 genes have been suggested 

to be the candidate genes for neurologic and behavior 

phenotypes.
54

 Microdeletion syndrome at 16p11.2 

(OMIM#611913) and microduplication syndrome at 16p11.2 

(OMIM#614671) were initially associated with ASD but a 

subsequent study revealed mirror body mass index 

phenotypes. Microdeletion at 16p11.2 is often associated 

with obesity, macrocephaly and ASD, while reciprocal 

microduplication is associated with underweight, 

microcephaly and schizophrenia.
55,56

 It has been estimated 

that the most frequently seen genomic disorders account for a 

4.5% diagnostic yield in pediatric patients and an estimated 

0.18% prevalence in a general population.
1
 

Uniparental Disomy (UPD), Regions of Homozygosity 

(ROH), and Variants of Unknown Significance (VOUS) 

UPD is defined as the inheritance of both homologs of a 

chromosome pair from a single parent. When both homologs 

are from that parent, it is denoted as heterodisomy or 

heteroUPD. If both copies are from one parental homolog, it 

is termed as isodisomy or isoUPD. UPD of chromosomes 6, 

7, 11, 14 and 15 have been known to cause diseases. Paternal 

UPD of chromosome 15, patUPD15, causes Prader-Willi 

syndrome while maternal UPD, matUPD15 causes Angelman 

syndrome. Segmental duplication of maternal 11p15 or 

paternal deletion of 11p15 causes decreased expression of 

IGF2, manifesting with impaired growth or Silver–Russell 

syndrome. Segmental duplication of paternal 11p15, paternal 

UPD, or maternal imprinting mutations of 11p15 lead to 

increased expression of IGF2, manifesting with overgrowth 

and Beckwith–Wiedemann syndrome.
57

 Current validated 

CGH-SNP aCGH and SNP chip can detect chromosomal and 

segmental isoUPD but the detection of heteroUPD requires 

concurrent parental study.
58

 The clinical significance of ROH 

segments is not clear. One possible disease-causing 

mechanism could be the presence of autosomal recessive 

phenotype by the doubling of a single mutation within the 

ROH segment. Other findings such as VOUS detected in 

approximately 9.3% of pediatric cases will require follow up 

parental study to determine the parental origin of VOUS and 

even further functional analysis to understand their clinical 

significance.
59

 

 

FUTURE DIRECTIONS AND CONCLUDING 

REMARKS     
The aCGH or SNP chip analysis has brought pediatric and 

prenatal genetic evaluation into the genomic era. This 

progress has contributed greatly to our understanding of 

genetic etiology in 12%-20% of pediatric patients with 

DD/ID/MCA/ASD. In additional to the technical progress in 

cytogenomic diagnosis, the implementations of knowledge-

based genetic counseling, rational clinical action and follow 

up familial studies could be of direct benefit for a substantial 

proportion of patients.
60,61

 For example, the aggressive 

behavior from patients with a 15q13.3 deletion involving the 

CHRNA7 gene could benefit from treatment with the NChR 

allosteric modulator and acetylcholinesterase (AChE) 

inhibitor, galantamine.
62

 Research application of WGS 

defined paired-duplication marked cryptic inversion and 

breakpoints of translocation and inversion.
63,64

 Future clinical 

use of WGS could further expand the spectrum of 

cytogenomic abnormalities by delineating VOUS, ROH, and 

more cryptic structure variants to single nucleotide level. As 

we gain better understanding of molecular mechanisms of 

these cytogenomic abnormalities through functional analysis 

and develop novel target therapeutic approaches, disease-

specific management and treatment could be introduced in 

the near future.  
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